Data Analysis Report
Overview
This report analyzes a structured residential real estate dataset from the Taipei metropolitan area, designed for hedonic price modeling. The data describe several hundred property transactions (414 samples) concentrated in the 2012–2013 period and capture key determinants of unit-area price: transaction timing, building age, transit accessibility, local amenity density, and precise geographic location. The analytical focus is twofold: to build robust, time-aware predictive models for the unit-area price and to quantify economically interpretable effects of accessibility, amenities, age, and spatial variation on prices.

The dataset contains the following fields. No is a row identifier and is not used as a predictor. X1 transaction date encodes the transaction time as year plus month/12 (for example, 2012.9167 denotes December 2012), which should be converted to a proper datetime index for time-aware analysis. X2 house age measures building age in years at sale. X3 distance to the nearest MRT station records straight-line distance in meters, reflecting transit accessibility. X4 number of convenience stores is an integer count of nearby amenities. X5 latitude and X6 longitude are decimal degrees (WGS84) that localize each property within a compact urban area. The target Y house price of unit area is measured in New Taiwan Dollars per ping (approximately 3.3 square meters), and represents the response variable to be predicted and explained.

The target definition and modeling goals are explicit. The response variable Y is the unit-area price, and the primary objective is to predict Y accurately while preserving interpretability of underlying relationships. Substantive questions include whether price declines with greater distance to MRT stations (accessibility premium), whether additional convenience stores are associated with higher prices (amenity premium), how building age relates to price (including potential nonlinearity and cohort effects), how prices vary across latitude–longitude within the study area (spatial heterogeneity), and whether a short-run temporal trend is detectable over the limited period observed. These hypotheses guide both exploratory analysis and formal model specification and testing.

Several data characteristics shape the preprocessing strategy and the methodological choices. The float-encoded dates require conversion to valid date types and careful handling due to the narrow temporal span. Variables span heterogeneous units (currency per ping, meters, counts, and degrees), motivating scaling or standardization before modeling. Spatial coordinates, distance to MRT, and amenity counts may be correlated, raising the need to assess and manage multicollinearity. Potential outliers in distance, price, and amenity counts, as well as duplicate or near-duplicate coordinates, warrant targeted quality checks. Given typical right-skew in property prices, a log transformation of Y is appropriate to stabilize variance, support linear-additive modeling on the log scale, and facilitate back-transformation with smearing for unbiased price-level metrics.

Methodologically, the analysis adopts a time-aware evaluation protocol that respects transaction chronology, using a 70/15/15 split across train, validation, and test periods. Models are fit on log-transformed Y, with performance reported both in log-space (e.g., RMSE, R²) and in price space via smearing correction. To balance accuracy and interpretability, the workflow benchmarks complementary model classes: regularized linear models with engineered terms, gradient-boosted trees with domain-informed monotonic constraints on accessibility and amenities, and generalized additive models with smooth functions for nonlinearity and a two-dimensional smoother over latitude–longitude for spatial structure. The downstream deliverables include reproducible preprocessing, transparent model comparisons, interpretable effect summaries, and deployable inference artifacts with monitoring guidance tailored to time, accessibility, amenities, and location features.
Data Import
This section documents the ingestion of the Taipei housing dataset and the foundational integrity checks necessary for reproducible downstream analysis. The dataset was loaded from a tabular source into an in-memory data frame with original column names preserved. No content-altering transformations were applied at this stage; the objective was to faithfully read the source, establish a stable row index, and verify that the schema is consistent with expectations for subsequent preprocessing and modeling.

Given that the column No serves as a row identifier rather than a substantive feature, it was designated as the data frame index. The field was coerced to a 64-bit integer to ensure consistent typing across the dataset. Index uniqueness was verified to support deterministic row addressing. Where duplicate identifiers might occur in raw files, the import pipeline is designed to retain the first occurrence for a stable index and to flag the condition for audit, ensuring that no assumptions about ordering or duplication propagate into the analysis.

Schema verification confirmed the presence of eight variables with the following names and inferred data types at load time:
- No: int64
- X1 transaction date: float64
- X2 house age: float64
- X3 distance to the nearest MRT station: float64
- X4 number of convenience stores: int64
- X5 latitude: float64
- X6 longitude: float64
- Y house price of unit area: float64
All analytical fields are numeric at import, which facilitates downstream type-coercion and scaling. The target variable Y house price of unit area is present, enabling supervised workflows without additional joins.

Basic structural safeguards were applied to catch common ingestion issues. A duplicate header row check was included to remove an accidental second header line if present in the first data row, a frequent artifact in CSV-like sources. Column count and names were validated against the expected schema, and the target column’s presence was confirmed before proceeding. These checks ensure the dataset’s structural integrity without imposing analysis-specific transformations at this stage.

The sample preview reinforces the correctness of the raw encodings. The field X1 transaction date appears as a year-plus-fraction representation (for example, values such as 2012.916667 and 2013.583333 correspond to month resolution at twelfths of a year), consistent with a 2012–2013 transaction window. Geographic coordinates X5 latitude and X6 longitude are numeric and formatted as decimal degrees, and the target Y is numeric in unit-area terms. While these encodings are suitable for import, later steps will convert the date to a time index more amenable to modeling and will standardize heterogeneous units across features.

In summary, the dataset was successfully loaded with intact structure, the No field was set as a unique integer index, and all columns conformed to the expected names and numeric types. These results provide a clean, stable starting point for schema detailing, preprocessing, and subsequent analytical modeling.
Data Schema and Units
The dataset contains eight columns, all stored as numeric types at import. The identifier field No is an integer (int64) and serves purely as a row key; it should be set as the index and excluded from analytical modeling. The substantive variables are X1 transaction date (float64), X2 house age (float64), X3 distance to the nearest MRT station (float64), X4 number of convenience stores (int64), X5 latitude (float64), X6 longitude (float64), and Y house price of unit area (float64). Although these are numeric in storage, they represent different measurement scales and units, implying distinct treatment in preprocessing and modeling.

Each variable’s unit and semantic role are as follows. X1 transaction date is encoded as a floating point year plus month/12 (for example, 2012.916667 corresponds to December 2012), which is an interval-scale time marker rather than a true datetime; conversion to a proper date and derivation of calendar features are recommended to avoid month-fraction rounding artifacts. X2 house age is measured in years at the time of transaction and is on a ratio scale; negative or implausible values should be treated as data quality issues. X3 distance to the nearest MRT station is a continuous ratio-scale measure in meters, reflecting transit accessibility. X4 number of convenience stores is a discrete count (integer) representing local amenity density. X5 latitude and X6 longitude are decimal degrees (WGS84), providing precise spatial coordinates within the Taipei area; they encode location on a geographic coordinate system rather than a metric projection. Y house price of unit area is the target, expressed in New Taiwan Dollar per ping, where one ping is approximately 3.3 square meters; this is a positive, continuous monetary measure typically exhibiting right skew.

Given the heterogeneity of units—meters, counts, degrees, years, and currency per unit area—type-aware preprocessing is required. Time encoded as float should be coerced to datetime to support temporal indexing and feature derivation. Continuous features on different physical scales benefit from normalization or standardization; for example, distances and prices may be stabilized by monotonic transforms when skewed, while integer counts can be standardized after appropriate imputation. Geographic coordinates in degrees are meaningful for spatial modeling but are not directly comparable to metric distances; if distance-based features are needed, coordinates should be transformed into a projected coordinate system or used to derive spatial smoothers or cluster indicators. Finally, because accessibility variables (distance to MRT, convenience store count) and coordinates all characterize location, downstream checks for multicollinearity are prudent when including them together in a model.
Variable Roles
This study designates Y house price of unit area as the sole target variable and treats X1–X6 as explanatory predictors. The field No serves only as a row identifier and index and is excluded from modeling. All predictors are numeric, with heterogeneous units that reflect different mechanisms: time, structure, accessibility, amenities, and location. This heterogeneity motivates scale-aware preprocessing and model choices that respect plausible economic monotonicities and nonlinearities without imposing unwarranted structure.

X1 transaction date is a temporal predictor encoded as year plus month/12 (for example, 2012.9167 representing December 2012). Its role is to capture short-run market dynamics within a limited temporal span. For modeling and interpretation, it is advantageous to convert this encoding into a monotone time index such as months since the first observed month to reduce floating-point artifacts, and to standardize it for numerical stability. Given the narrow coverage (2012–2013), X1 functions primarily as a control for short-run shifts rather than a long-term trend estimator, and should be handled in a time-aware split to avoid temporal leakage.

X2 house age measures structural depreciation in years at the transaction date. Economically, older properties typically command lower unit-area prices due to physical wear, outdated amenities, or regulatory/grading differences, suggesting a non-increasing effect of X2 on Y with potential nonlinearities (e.g., faster depreciation in early years and flattening thereafter). As a role in the feature set, X2 provides a direct structural control; preprocessing safeguards include converting negative entries, if any, to missing and using robust scaling and outlier clipping to mitigate leverage from extreme values.

X3 distance to the nearest MRT station captures transit accessibility in meters and acts as a central locational determinant of housing value. Greater distance generally implies lower accessibility, supporting a monotone non-increasing relationship between Y and X3. Distance effects tend to be nonlinear and right-skewed; applying a log1p transform before scaling can stabilize variance and better linearize the effect for parametric learners while preserving rank information for nonparametric models. Because extreme distances may disproportionately influence fits, robust clipping in transformed space is appropriate.

X4 number of convenience stores is an amenity density proxy, expressed as a nonnegative integer count. It contributes to local service accessibility and neighborhood vibrancy, with a plausible positive but potentially diminishing impact on Y as counts grow. As a role in modeling, X4 complements X3 by capturing amenity richness not explained by rail proximity. Since it is discrete and may include outliers or small data-entry artifacts, a nonnegative impute–clip–round strategy followed by standardization maintains its count nature while controlling undue influence. Models that enforce an increasing partial dependence on X4 align with domain expectations.

X5 latitude and X6 longitude are geospatial coordinates in decimal degrees (WGS84), providing fine-grained spatial context. Their role is to capture residual spatial heterogeneity beyond transit distance and amenities, including proximity to central business districts, school districts, or localized neighborhood effects. Because the study area is geographically compact, small numerical differences can encode meaningful spatial gradients; standardizing both axes supports stable optimization. These coordinates can be entered directly into flexible learners or used to derive spatial features (e.g., cluster labels, smooth bivariate surfaces). Given that X3 and X4 also reflect urban form, X5 and X6 may correlate with them; multicollinearity diagnostics and regularization help manage redundancy.

Y house price of unit area, expressed in New Taiwan Dollar per ping, is the dependent variable for prediction and inference. Real-estate prices are often right-skewed; modeling in log space via a log1p transform can reduce skewness, improve homoscedasticity, and make additive effects more interpretable as approximate percentage changes. When evaluating models trained in log space, back-transformation with an appropriate smearing adjustment enables metrics in the original currency units, while primary optimization can remain on log-scale error.

Taken together, the predictors fulfill complementary roles: X1 controls temporal variation; X2 represents structural depreciation; X3 and X4 encode accessibility and amenity mechanisms; and X5–X6 capture residual spatial patterns. Interaction terms such as X3×X4 can reflect that transit benefits may depend on local amenities, and location–age interactions can represent neighborhood-specific depreciation. Where methodologically supported, monotonic constraints for X3 (non-increasing) and X4 (non-decreasing) align model behavior with substantive expectations, while flexible smooths for X2 and spatial coordinates accommodate nonlinear effects.
Scope and Coverage
This study focuses on a narrowly defined temporal window and geographic footprint. The temporal scope covers residential transactions concentrated in 2012–2013, as indicated by the transaction date field encoded as year plus month/12. The limited span implies that any time-related patterns reflect short-run dynamics rather than long-term structural trends. Consequently, estimates of seasonal or month-to-month variation are feasible, but inference about multi-year cycles, regime shifts, or policy effects beyond this period is out of scope.

The spatial coverage is the Taipei metropolitan area. Geographic coordinates cluster within a compact urban region, aligning with the presence of urban accessibility and amenity variables (distance to the nearest MRT station and the number of convenience stores). This urban focus supports analyses tied to transit proximity and neighborhood amenities characteristic of Taipei’s built environment. However, rural or peri-urban markets and other Taiwanese cities are not represented, and results should not be generalized beyond the covered urban context.

The unit of analysis is the transacted residential property at a specific time and location, with the target expressed as unit-area price in a local market convention. Given the combined temporal and spatial constraints, the scope of inference is the short-run behavior of Taipei-area residential prices under urban conditions prevalent during 2012–2013. Model interpretation and any policy or investment insights should therefore be limited to similar neighborhoods and time frames, with explicit caution against extrapolation to different regions or later periods where market structure, transit networks, or amenity distributions may have evolved.
Sample Preview
The sample preview displays five transactions and confirms the dataset’s structure: eight columns comprising an index-like identifier (No), a float-encoded transaction date (X1), continuous predictors for house age (X2), distance to the nearest MRT station (X3), latitude (X5) and longitude (X6), a discrete amenity count (X4), and the continuous target variable (Y). The presence of heterogeneous units—years, meters, counts, geographic degrees, and currency per unit area—highlights the need to reconcile measurement scales prior to modeling. The encoding of X1 as year plus month/12 (e.g., 2012.916667) indicates month-level granularity captured as fractional years rather than native datetime, which will require conversion for time-aware analysis. No serves purely as a row identifier and should be excluded from downstream feature sets.

Within the preview, X2 (house age) spans from newer units at 5.0 years to older ones at 32.0 years, and Y (unit-area price) ranges from 37.9 to 54.8, indicating a nontrivial spread in both structure age and observed prices among these rows. The sampled X1 values cover late 2012 through mid-2013, consistent with a narrow temporal window. Spatial coordinates cluster around approximately 24.98 N latitude and 121.54 E longitude, and observed differences in X3 and X4 within the sample suggest variation in transit accessibility and amenity density. These observations are illustrative and serve to validate field meanings and basic variability; comprehensive distributional characterization is deferred to the exploratory analysis sections.

Overall, the preview establishes that the schema and data types are consistent with expectations and that the sample rows contain sufficient variation to support inference on age, accessibility, amenities, and location. It also signals key preprocessing requirements: converting X1 to a proper datetime index, excluding the No identifier, and applying appropriate scaling or transformation to reconcile disparate units. This step functions as a quick integrity check before proceeding to systematic preprocessing and quality assessment.
Data Preprocessing
This stage establishes a reproducible, feature-wise preprocessing pipeline that converts the raw Taipei housing dataset into analysis-ready inputs. The workflow begins with schema hygiene to ensure that structural artifacts do not contaminate modeling: a duplicate header row, if present, is removed; the record identifier No is coerced to integer, deduplicated, and set as the index; and rows lacking the target are excluded. These steps preserve one-to-one alignment between records and features, prevent leakage from malformed rows, and maintain a consistent base for subsequent transformations.

Type control and missing-data handling follow a conservative, robust strategy tailored to each variable’s semantics. For continuous fields prone to errant negatives (e.g., age and distance), negatives are treated as invalid and converted to missing values, after which median imputation is applied to mitigate the influence of outliers. Potentially mixed-type feature columns are detected via a lightweight check for simultaneous string and numeric content; such columns are coerced to string and ordinal-encoded with a dedicated code for unknown categories, ensuring downstream compatibility without discarding information. This approach balances robustness with parsimony, avoiding complex imputation where simpler, defensible choices suffice.

Transaction time (X1) is transformed into months since the earliest observed date to obtain a linear, interpretable index of time. The months index is then clipped using interquartile-range (IQR) whiskers to temper the effect of extreme values that could otherwise distort scale-sensitive models. Standard scaling is applied to standardize units and facilitate comparability across features, a suitable choice when the distribution is not heavy-tailed after clipping.

House age (X2) is constrained by domain knowledge to be non-negative. Negatives are treated as missing, imputed via the median, and clipped using IQR bounds that enforce a lower limit of zero while limiting extreme upper values. A robust scaler is used instead of a standard scaler to dampen the influence of remaining tails and leverage points, reflecting the typical right-skew and heterogeneity in age distributions.

Distance to the nearest MRT station (X3) is treated as a strictly non-negative, right-skewed continuous variable. After negative-to-missing conversion and median imputation, a log1p transformation is applied to stabilize variance and reduce skew. Clipping is performed in the transformed space using IQR whiskers, which effectively curtails extreme leverage while preserving monotonicity with respect to distance. Robust scaling further enhances resilience to residual outliers, making the representation suitable for models sensitive to distributional asymmetry.

The number of convenience stores (X4) is processed as a discrete, non-negative count. Missing values are imputed with the median, negative values are floored at zero, and an upper IQR clip is applied to reduce the influence of unusually high counts that may reflect data entry anomalies or rare local conditions. The feature is then rounded to the nearest integer to maintain count integrity before standard scaling, which normalizes the feature while preserving ordinal relations among counts.

Geospatial coordinates (X5 latitude and X6 longitude) are median-imputed and standardized. Standardization places the axes on comparable scales, aiding models that incorporate spatial smoothers or distance computations, while imputation minimizes the risk of dropping rows and maintains spatial coverage when isolated missing values occur.

All feature-specific pipelines are assembled via a ColumnTransformer, ensuring that each column is transformed only by its designated sequence and that absent columns are gracefully ignored. The output is a dense, column-aligned array with preserved feature names for traceability. This modular assembly promotes clarity of roles, facilitates auditing, and enables consistent application across training and inference environments.

The target variable, Y house price of unit area, undergoes a conditional log1p transformation when its empirical skew exceeds a threshold, producing a companion target in log space. This criterion-based transformation aims to reduce heteroskedasticity and approximate symmetry, improving the stability of linear and additive modeling approaches while maintaining a straightforward inverse mapping for interpretation.

Together, these steps establish a coherent preprocessing layer that enforces domain constraints, mitigates outliers and skew, and harmonizes scales across heterogeneous predictors. The design favors robust statistics, monotonicity-preserving transforms where appropriate, and explicit handling of mixed types, providing a principled foundation for the subsequent modeling and validation stages.
Type and Missing Handling
This section establishes a defensible strategy for type coercion and missing-data handling to ensure that downstream modeling consumes numerically stable, semantically coherent inputs. Prior to feature processing, the schema is sanitized by removing a potential duplicate header row and by enforcing the record identifier No as a unique 64-bit integer index. Duplicate keys are dropped to preserve one-to-one mapping between records and feature vectors. Observations with missing target values are excluded to prevent leakage of incomplete supervision into model training and evaluation.

To mitigate type ambiguities, candidate predictors are screened for mixed-type content. Columns with object dtype or with a mixture of strings and numerics in sampled non-missing entries are flagged as mixed-type. Such columns are coerced to string and encoded using an ordinal encoder configured to map unseen categories at inference to a reserved code. This approach guarantees a purely numeric design matrix while avoiding errors from novel categories and preserving categorical levels, including cells that were originally missing and cast to the literal string “nan.”

Numeric predictors are coerced to float arrays and then processed with feature-specific validity and range checks prior to imputation. For variables that cannot logically take negative values, invalid negatives are converted to missing. House age (X2) and distance to the nearest MRT station (X3) follow this rule, ensuring that out-of-domain entries do not bias distributional summaries. The count of convenience stores (X4) is constrained to be nonnegative with an upper clip and subsequently rounded to an integer-like value to respect its discrete nature. The transaction date (X1) is deterministically converted from its original scale to months since the earliest observed transaction; this both standardizes the unit and reduces numerical magnitude, which improves stability in models sensitive to feature scaling. Geographic coordinates (X5, X6) are retained as continuous numerics.

Imputation is conservative and robust. Column-wise median imputation is applied to continuous predictors after invalid-to-missing conversion, limiting sensitivity to skew and extreme values relative to mean imputation. This policy preserves sample size while maintaining central tendency representative of the observed distribution. For mixed-type inputs, explicit imputation is not required because categorical casting treats missing entries as a valid level that is consistently encoded.

Outlier control is integrated with type handling to prevent undue leverage from extreme observations. Transaction dates in month units are clipped by an interquartile range (IQR) rule, which reduces the influence of exceptionally early or late transactions within the observation window. House age is clipped using an IQR-based band with a nonnegative lower bound, consistent with its domain. Distance to MRT is transformed via log1p and clipped in log space using the IQR rule; this choice stabilizes long right tails common in distance-like variables while preserving monotonicity and interpretability in log-transformed units. The number of convenience stores is upper-clipped by an IQR threshold after enforcing nonnegativity and then rounded, aligning the processed values with the underlying count process. Latitude and longitude are not clipped to avoid distorting spatial relationships; they are instead centered and scaled.

Scaling is applied in a manner consistent with each variable’s distributional characteristics. Robust scaling is used for house age and distance to MRT to downweight the residual impact of heavy tails after clipping and transforms. Standard scaling is applied to transaction date in months, convenience store counts (post-rounding), and geographic coordinates to harmonize feature scales for algorithms that are not scale invariant. Mixed-type encodings are left as encoded ordinals, enabling uniform numeric input without imposing further distributional assumptions.

Target handling respects supervised-learning constraints. Rows with missing target values are removed. If the target distribution exhibits substantial positive skew, a log1p transform is applied to stabilize variance, improve approximate normality, and align loss functions with multiplicative error structures often seen in prices. The transformed target is retained alongside processed features for subsequent modeling stages.

Operationally, these procedures are encapsulated in a column-wise transformation pipeline. Each feature family receives an appropriate sequence of type coercion, missing-value imputation, outlier control, and scaling, orchestrated by a column transformer. Unknown categories at inference are mapped deterministically, and unspecified columns are excluded, which together ensure reproducibility and compatibility between training and deployment. This design minimizes information loss from missingness, guards against out-of-domain values, and yields a numerically well-conditioned matrix suitable for a wide range of models.
Mixed-Type Columns
Mixed-type columns arise when a single field contains both numeric and non-numeric tokens, typically due to heterogeneous data entry, schema drift, or file parsing inconsistencies. Such heterogeneity can silently propagate through numerical pipelines, producing invalid transformations or masking errors. Accordingly, mixed-type detection is restricted to the predictor set (X1–X6) to ensure only modeling features are screened, and to avoid conflating indexing or target-specific issues with feature preprocessing needs.

Detection follows a pragmatic two-tier strategy. First, any feature with object dtype is flagged as mixed, recognizing that pandas object arrays commonly harbor strings, mixed tokens, or irregular markers. Second, for non-object dtypes, a sample of values is inspected to check whether string and numeric instances co-occur. This bounded inspection balances robustness with efficiency: it is sufficient to identify heterogeneity in practice without exhaustively scanning entire columns. A column is marked mixed when both string and numeric types are observed, signaling that a single numerical transform would be unsafe.

Encoding mixed-type features is handled through a dedicated pipeline that normalizes values to strings and then applies an ordinal encoder with explicit handling for unknown categories. Converting to strings before encoding ensures consistent input types and avoids implicit casting issues. The encoder maps each observed category to a numeric code, with unseen categories assigned a sentinel value to preserve pipeline stability at inference time. This approach prioritizes fault tolerance and prevents numerical transformers from operating on non-numeric tokens. At the same time, ordinal codes introduce an arbitrary order that may not reflect a meaningful scale; downstream models should treat these features as categorical surrogates rather than ordered quantities.

Integration with the broader column-wise preprocessing ensures that numerical transformations are applied only to columns confirmed as numeric. Non-mixed features follow their designated pipelines: transaction date is converted to months since the first observed date and clipped by an IQR rule before standardization; house age and MRT distance are made nonnegative, imputed, clipped (with MRT distance transformed via log1p), and robustly scaled; convenience store counts are imputed, clipped to a nonnegative upper bound and rounded prior to scaling; latitude and longitude are median-imputed and standardized. Mixed-type fields, when present, are routed exclusively through the categorical encoder. This separation reduces the risk of misapplied transformations and preserves coherent feature semantics in the model matrix.

Several quality and modeling considerations accompany this design. Ordinal encoding is compact and model-agnostic but can inadvertently imply monotonic relationships for categorical surrogates; regularization and feature importance review can mitigate such risks. If mixed types stem from recoverable parsing issues—for example, numeric strings with occasional non-numeric markers—domain-informed coercion to numeric followed by imputation may be preferable. Conversely, when mixed tokens reflect true categories (labels, flags, or codes), explicit categorical treatment is appropriate. Monitoring for the emergence of new categories and auditing unique values per feature across data vintages help maintain encoding integrity and guard against drift.
X1 transaction date
The transaction date (X1) is treated as a continuous time index and transformed to facilitate robust modeling over the short study horizon. The original representation encodes calendar time as a floating year value. Direct use of raw years introduces arbitrary scale and potential leverage from extreme values. Therefore, we first recast X1 into a relative, integer month index and then standardize it to stabilize optimization and enable comparability across features.

The primary transformation converts each observation to “months since start,” anchoring time at the earliest observed year in the data. Concretely, each value is shifted by the minimum year and multiplied by 12, then rounded to the nearest whole month. This produces an interpretable, linear time scale where 0 corresponds to the first observed month, positive values indicate later months, and spacing is uniform across the sample. Using a relative index removes dependence on an arbitrary calendar origin while preserving the ordering and intervals intrinsic to transaction timing.

To mitigate undue influence from a small number of extreme early or late dates, we apply interquartile-range (IQR) clipping in the month domain. Bounds are computed using the 1.5×IQR rule on the month index, and values outside the lower or upper fences are clipped to the nearest bound. This robust step reduces leverage effects without changing the rank order of non-outlying observations, which is particularly important when time is subsequently used to estimate short-run trends.

After clipping, the month index is standardized by subtracting its sample mean and dividing by its standard deviation (z-score scaling). Standardization centers the transformed feature at zero with unit variance, improving numerical conditioning for linear models and ensuring that regularization penalties treat X1 on the same scale as the other predictors. In the preprocessing preview, the transformed X1 takes both negative and positive values, reflecting transactions that occurred earlier or later than the sample mean month, respectively; this is the expected pattern after z-scoring a time index.

Implementation follows a dedicated pipeline: a custom MonthsSinceStartIQRClipper computes the month index and applies IQR clipping, followed by a StandardScaler. No imputation is performed specifically for X1 in this pipeline; the transformation is designed to handle the observed numeric field directly. The broader preprocessing framework also detects mixed-type columns and would route them through a fallback encoder if necessary, but X1 is processed numerically here. The resulting feature is a monotonic, clipped, and standardized time indicator suitable for downstream modeling, preserving temporal ordering while curbing outlier influence and aligning scale with other variables.
X2 house age
This variable represents building age and is inherently non-negative. As a first step, all negative entries are treated as invalid measurements and converted to missing values. This conservative rule prevents implausible inputs from contaminating downstream statistics and ensures that subsequent processing is anchored to physically meaningful support for the feature.

Missing values arising from invalid negatives or gaps in the source are imputed using the median. The median is chosen for its robustness to skewed age distributions and insensitivity to extreme values that are common in real-estate datasets. Imputation parameters are learned on the fit data and reused for inference, guaranteeing consistent handling of unseen records and avoiding information leakage.

To limit undue influence from extreme ages while preserving the majority structure, an interquartile-range-based clipping is applied after imputation. The lower bound is set to the larger of zero and Q1 − 1.5×IQR, enforcing non-negativity and avoiding artificial inflation of small ages. The upper bound is Q3 + 1.5×IQR. Values outside these whiskers are truncated to the nearest bound. This approach retains ordinal information for the central mass of observations while curbing leverage from tail values that are either rare or error-prone, a desirable trade-off for stable model estimation.

Following clipping, the feature is standardized with a robust scaler that centers by the median and scales by the interquartile range. Expressing house age in IQR units reduces the impact of skew and outliers, aligns dynamic ranges across predictors, and improves numerical conditioning for algorithms sensitive to feature scaling. In this transformed space, a one-unit change corresponds approximately to a shift of one IQR in the original age, facilitating interpretable effect sizes in linear components and stable optimization in more flexible models.

The processing order—invalid-to-missing, median imputation, IQR clipping with a non-negative floor, then robust scaling—preserves monotonic relationships for the vast majority of records; only the most extreme tails are flattened by clipping. At inference time, the same steps and learned quantiles are applied, so new negative inputs are treated as missing and resolved to the trained median, and extreme ages are mapped into the trained bounds. This ensures reproducibility and guards the model against drift induced by rare or anomalous inputs.

This transformation deliberately avoids nonlinear transforms such as logarithms that are ill-defined at zero and would complicate interpretation near new buildings. It also retains the feature’s ordinal scale so that potential nonlinear depreciation patterns can be modeled downstream (e.g., via splines) without encoding artifacts from preprocessing. Overall, the pipeline yields a clean, bounded, and robustly scaled representation of house age that is well-suited for both linear and nonlinear modeling stages.
X3 distance to MRT
This section addresses the preprocessing of X3 distance to the nearest MRT station, a non-negative, typically right-skewed distance measure. To align the feature with modeling assumptions and reduce leverage from extreme values, the transformation sequence applies a log1p transform, outlier clipping in the transformed domain, and robust scaling. The aim is to stabilize variance, mitigate heavy tails, and produce a unitless, comparable feature suitable for both linear and non-linear models.

Data quality is first enforced by treating any negative entries as invalid and converting them to missing values. Although true travel distances cannot be negative, unexpected negatives may arise from data entry errors or type coercions; replacing them with missing indicators avoids undefined behavior under logarithmic transformation. Missing values are imputed with the median, a robust choice that resists distortion by outliers and preserves the central tendency of the observed distribution.

To address skewness and diminishing marginal effects of distance, the feature is transformed using log1p. This transformation preserves zero (log1p(0) = 0), compresses large distances, and accentuates proximity differences that are typically more relevant for accessibility and pricing. Outlier handling is performed on the log-transformed values using an interquartile-range fence: values outside the 25th/75th percentile range extended by 1.5 IQR are clipped to the nearest boundary. Executing the clipping in log space ensures that extremes are moderated proportionally on the multiplicative scale, preserving rank order while curbing undue influence of rare, very large distances.

Following transformation and clipping, the feature is standardized with a robust scaler that centers by the median and scales by the IQR. This choice yields a feature centered approximately at zero with an interquartile spread near one, while being far less sensitive to remaining tail points than z-score standardization. The result is a stable, unitless predictor that integrates well with algorithms relying on gradient-based optimization or regularization and provides more reliable coefficient magnitudes in linear specifications.

Methodologically, this pipeline preserves the monotonic relationship between distance and accessibility while encoding diminishing sensitivity to distance increases, which is consistent with urban economics. In downstream modeling, this facilitates imposing or learning a decreasing effect of X3 on price without allowing a few extreme observations to dominate the fit. Because the transformation parameters (imputation value, clipping thresholds, and scaling statistics) are learned during fitting and reused consistently at inference, the procedure remains deterministic and reproducible.
X4 convenience stores
The convenience store count is treated as a non-negative discrete predictor whose raw scale and potential irregularities can affect downstream estimation if left unaddressed. As a field representing local amenity intensity, it may exhibit skewness, a heavy right tail, and zero inflation. The preprocessing therefore targets three aspects: completeness, distributional robustness, and numeric comparability.

Missing values are imputed using the median. The median is robust to skew and isolated extremes, yielding a central tendency that better preserves the typical neighborhood amenity level than a mean-based fill would. This choice minimizes the influence of rare high-count locations on imputation and stabilizes model fitting, particularly for algorithms sensitive to the distribution center and scale.

Outlier mitigation is applied via an interquartile range rule with a one-sided upper clip. Specifically, an upper bound is set at the third quartile plus 1.5 times the IQR, while the lower bound is enforced at zero to respect the non-negativity of counts. During transformation, any negative entries are coerced to zero, values above the upper bound are clipped, and the result is rounded to the nearest integer to maintain the semantic integrity of a count variable. This procedure reduces leverage from extreme observations without discarding data, limits undue influence on parametric estimators, and preserves interpretability by keeping the feature in integer units prior to scaling.

After imputation and clipping with rounding, the feature is standardized to zero mean and unit variance. Standardization ensures numerical comparability across predictors and stabilizes optimization for models that assume or benefit from features being on similar scales. For regularized linear models, it prevents scale-related coefficient bias; for tree-based or spline-based methods, it promotes consistent hyperparameter behavior across features, even though these methods are less scale-dependent.

If the column is detected as mixed-type (containing both numeric and string entries), it is routed through a separate categorical encoding path to avoid coercion artifacts. Otherwise, the numeric pipeline applies as described. Overall, the sequence—median imputation, IQR-based upper clipping with non-negativity enforcement and rounding, followed by standardization—balances robustness to data imperfections with retention of the variable’s discrete amenity meaning, facilitating reliable estimation of its association with the target.
X5 latitude, X6 longitude
X5 latitude and X6 longitude serve as the core spatial coordinates of each observation. Their primary role is to encode location-dependent variation in prices that is not captured by non-spatial attributes (e.g., accessibility or amenities). Preprocessing aims to make these variables reliable and numerically well-behaved inputs for downstream models, while preserving the spatial geometry inherent in the coordinates.

Missing values in latitude and longitude are imputed with the column-wise median. The median is a stable estimate of central tendency under moderate skew or local outliers and avoids shifting the spatial center of mass as mean imputation might. Using a univariate imputation per axis also ensures that the replacement values remain within the empirical support of each coordinate, reducing the risk of introducing artificial spatial patterns.

After imputation, each axis is standardized independently using a mean–standard deviation transformation. This step centers both latitude and longitude to zero mean and scales them to unit variance. Standardization is particularly important because the raw units (degrees) have different spreads along the two axes and are not directly comparable in magnitude. Bringing both axes onto a common scale prevents one axis from dominating regularized linear models and improves numerical conditioning for optimization. It also benefits distance-based learners by avoiding anisotropic scaling induced by raw coordinate ranges.

No clipping or monotone transformation is applied to latitude and longitude at this stage. This choice preserves the full spatial extent of the sample and avoids truncating legitimately extreme but informative locations at the urban periphery. The trade-off is that strong outliers, if present due to data entry errors, could inflate the estimated standard deviation and compress most observations after scaling. This risk is mitigated by subsequent data quality checks, where unrealistic coordinates can be flagged and, if necessary, corrected or excluded.

Before routing coordinates into the geographic preprocessing branch, the workflow screens for mixed-type columns. When X5 and X6 are purely numeric—as expected—they pass through the median-impute plus standardize pipeline. If mixed types were detected (e.g., stray string tokens), they would be handled by a generic encoding fallback; however, for spatial variables this is undesirable, and coercion to numeric with appropriate cleaning is preferred. The applied order—imputation followed by standardization—ensures that scaling parameters are learned on complete columns without dropping rows, and that imputed values are incorporated consistently into the learned centering and scaling.

This treatment aligns the axes for downstream modeling while preserving relative positions. For linear or elastic-net models, standardized coordinates yield coefficients interpretable as price gradients per one standard deviation shift along each axis and help regularization operate fairly across dimensions. For tree-based or monotonic gradient boosting, scaling does not change splits’ semantics but can facilitate hyperparameter transferability. For smoothers or tensor-product splines in generalized additive models, standardized inputs stabilize the selection of smoothing parameters and promote balanced penalization across latitude and longitude. Note that standardization does not remove potential correlation between the axes; multicollinearity diagnostics later in the pipeline will assess any redundancy and inform whether additional spatial feature engineering is warranted.
Target Transform Y
The target variable is the unit-area transaction price, a strictly nonnegative monetary measure that typically exhibits right-skewness and scale-dependent dispersion. As part of preprocessing, a data-driven rule was applied: the sample skewness of the raw target was evaluated, and when exceeding a moderate threshold, the target was transformed using log1p to mitigate skew and stabilize variance. This produced a working target labeled as the log of one plus price per unit area. The rationale is twofold: monetary data often have heavy right tails due to premium properties and heterogeneous location quality, and error magnitudes tend to grow with level, creating heteroscedastic residuals in untransformed models. The log1p operation compresses the right tail, reduces the influence of extremes, and brings the distribution closer to a form suitable for linear and additive modeling.

Methodologically, log1p is defined for zero and positive values, ensuring numeric stability without requiring data shifting or exclusion. For prices well above zero, log1p approximates the natural logarithm, retaining the desirable properties of log-scale modeling while preventing undefined values at zero. On the transformed scale, multiplicative relationships in the original price space become approximately additive, which aligns with how many locational and amenity effects enter valuation. This change of scale reduces leverage from outlying high-price observations, supports more homogeneous residual variance across the range of predictors, and improves the robustness of correlation estimates and parametric fits.

Interpretation on the log scale is straightforward and economically meaningful. Differences in the log-transformed target correspond approximately to proportional differences on the original price scale, enabling coefficient interpretations as elasticities or semi-elasticities depending on predictor scaling. This facilitates clear communication of the effects of accessibility, amenities, age, and timing on price as percentage changes, which is more natural for stakeholders than absolute unit-area price deltas that vary with level. The transformed target also supports comparability across neighborhoods and time segments by dampening the distortive impact of premium tails.

Integrating the transformation into the modeling workflow entails training and validating models in log space and evaluating performance using both log-scale metrics (e.g., RMSE, R² on the transformed target) and price-scale metrics obtained via back-transformation. Because exponentiation introduces bias when converting predicted logs back to the original scale under error, a smearing estimator or similar correction should be used to produce unbiased price-level predictions and to compute price RMSE and MAE for decision-oriented reporting. Documenting the transformation and its back-transform procedure ensures traceable, reproducible inference and consistent communication of results.

Several cautions and extensions are appropriate. First, while log1p substantially reduces skew and heteroscedasticity, some asymmetry or tail behavior can remain; residual diagnostics on the transformed target are still necessary to check variance stability and influence from extremes. Second, the transformation changes the error model from additive to multiplicative in the original scale, which is appropriate for prices but requires care when aggregating or interpreting absolute errors. Third, alternative monotonic transforms (e.g., Box–Cox or Yeo–Johnson) could be considered if the empirical distribution deviates strongly from log-scale assumptions, but log1p provides a robust, simple default with good interpretability and minimal tuning. Finally, the use of log1p for the target should be coordinated with feature transformations and scaling so that model specification captures the joint mechanisms of accessibility, amenities, spatial position, age, and time without introducing unnecessary complexity or collinearity risks.
Data Quality Checks
This section establishes the integrity and analytical readiness of the dataset through three lenses: record-level duplication, atypical observations (outliers), and multicollinearity risk. The checks are aligned with the dataset’s schema and with the preprocessing design applied earlier, ensuring consistency between diagnostic criteria and downstream feature construction.

Record identity and duplication were verified at ingestion. The row identifier No was enforced as a unique integer index after removing any accidentally repeated header row. This prevents inadvertent duplication and guarantees deterministic row referencing throughout the pipeline. Beyond index-level uniqueness, practical duplication risks include properties recorded more than once (e.g., repeated transactions with identical coordinates and attributes) or near-duplicates that differ only trivially due to rounding. A systematic pass over exact duplicates (all fields equal) and coordinate duplicates (identical latitude–longitude pairs) is recommended to flag potential repeated observations for analyst review rather than automatic removal, since repeat sales can be legitimate but may confound cross-sectional analyses if unrecognized.

Type coherence and plausibility checks were applied to guard against data-entry artifacts. Features with physical non-negativity constraints—X2 house age and X3 distance to the nearest MRT station—were screened for impossible negative values; any such entries were converted to missing for subsequent imputation. Integer semantics of X4 number of convenience stores were preserved by clipping negative inputs to a minimum of zero and rounding after outlier handling. The float-encoded X1 transaction date was converted to an integer month index relative to the sample start; rounding to calendar months mitigates floating-point artifacts introduced by year-plus-fraction encodings. A safeguard for mixed-type detection was included to identify any unexpected string–numeric mixtures; when present, such columns are coerced and encoded to preserve information without contaminating numeric processing.

Univariate outlier diagnostics informed variable-specific transformations that stabilize distributions and attenuate leverage. For X1, an interquartile-range (IQR) rule was applied to the month index to contain extreme months without distorting the core temporal structure. X2 used a non-negative IQR clip with robust scaling to accommodate the mild right tail common to age distributions while preserving interpretable gradients. X3 employed a log1p transform before IQR-based clipping, reflecting its intrinsically right-skewed, positive domain and yielding a more symmetric, variance-stable scale. X4 was treated with an upper IQR cap, non-negativity enforcement, and integer rounding to respect its count nature while constraining the high-amenity tail. Spatial coordinates X5 latitude and X6 longitude were median-imputed where necessary and standardized to comparable scales; this step does not remove spatial extremes but reduces undue influence from rare boundary locations identified in exploratory views. The target Y house price of unit area underwent a log1p transform when skewness indicated, which compresses the price right tail and supports robust inference without fabricating or discarding valid high-value transactions.

Bivariate and multivariate anomaly checks complement univariate treatments by focusing on leverage patterns that arise from unusual combinations of predictors and outcomes. Examples include exceptionally high prices at long MRT distances or unusually low prices in amenity-dense, central locations. Such points can be legitimate but have disproportionate effects on parametric estimates and error metrics. The adopted clipping and transformation scheme reduces, but does not eliminate, their influence. It is therefore advisable to supplement preprocessing with influence diagnostics in modeling (e.g., leverage and Cook’s distance in linear settings, or robust loss functions) and to perform targeted audits on observations that deviate strongly from established accessibility–amenity–price relationships to distinguish genuine market niches from data issues.

Multicollinearity risk was screened conceptually and should be quantified using variance inflation factors (VIF) computed on the preprocessed design matrix. Correlation structures observed in exploratory analysis indicate potential redundancy among location and accessibility descriptors: X5 latitude and X6 longitude are strongly associated within the narrow spatial scope; X3 distance to MRT and X4 convenience store density co-vary due to urban clustering; and both sets relate to price in consistent directions. Elevated VIF values in this context are plausible and can inflate standard errors, obscure individual effect sizes, and destabilize coefficient signs without necessarily degrading predictive performance. Mitigation strategies include: reducing dimensionality of spatial inputs (e.g., orthogonalized coordinate bases, spatial embeddings, or neighborhood fixed effects); constraining accessibility features via monotonic or spline specifications to reflect theory while limiting variance; collapsing correlated indicators into composite indices; and employing regularization (Elastic Net) that shrinks redundant components. Because temporal ordering is central in this dataset, VIF assessment should be repeated within training folds of a time-aware split to avoid leakage and to ensure stability across periods.

Collectively, these checks establish that the dataset is structurally coherent, numerically well-posed, and appropriately conditioned for modeling. Identifier-level deduplication, principled handling of impossible values and missingness, distribution-aware clipping and transforms, and proactive multicollinearity controls together reduce the risk of biased inference and enhance the robustness of subsequent estimation and validation.
Exploratory Visualization
This section profiles the marginal distributions and key relationships among the temporal, structural, accessibility, amenity, and spatial variables to establish empirical regularities that will guide modeling. Variables have been standardized where noted to enable comparability across scales, and the target has been transformed with a log1p function to stabilize variance and compress monetary extremes. The exploration emphasizes distributional shape, potential anomalies, and the direction and form of associations relevant to price formation.

Temporal coverage exhibits an uneven pattern with a heavier concentration of transactions in later periods, indicating that time is not uniformly sampled across the study window. In the outcome series, binned medians over the time index reveal a trough in earlier bins followed by an upswing around the sample’s central period, and a mild easing thereafter. This pattern is consistent with a market phase change rather than isolated outliers and implies that time should be incorporated as a flexible trend or via time effects to prevent attributing market-level shifts to cross-sectional attributes. Because later transactions often involve newer stock, time also acts as a conduit for composition effects that must be separated from pure market dynamics.

The target distribution on the log1p scale is unimodal with a compact central mass and mild skew, with a few extreme observations at both ends. This shape confirms that the transformation has reduced heteroscedasticity and supports the use of linear and additive specifications with percentage interpretability. The tails likely correspond to combinations of unusual accessibility, amenity, and structural conditions; they are sparse but influential and motivate influence diagnostics and robust estimation to control leverage in subsequent modeling.

House age shows cohort structure rather than a single peak, with a right-skewed profile and a discernible trough between age groups. Boxplots indicate mild asymmetry without isolated extreme outliers, suggesting a stable but heterogeneous age composition. The expected relationship with the log price is negative, reflecting depreciation and obsolescence, and the multimodality argues for nonlinearity in specification (splines or cohort indicators). Age plausibly interacts with accessibility and amenities, as central, transit-proximate, amenity-dense locations can mitigate age-related discounts, while peripheral and low-amenity areas tend to amplify them.

Distance to the nearest MRT station is centered with moderate dispersion and heavier tails, consistent with an urban market where most homes are at average to good accessibility and a minority are extremely close or far. The association with the log price is clearly negative and monotonic: closer properties command higher unit prices. Variance in price is larger at short distances, indicating heteroskedasticity arising from finer micro-location and amenity differentiation in transit-rich areas. Functional form should allow curvature or thresholds to capture diminishing returns at very short distances, and robustness checks are warranted for the extreme tails that can exert leverage.

The amenity measure (number of convenience stores) is standardized and exhibits a bimodal or at least right-skewed structure with discrete layering, reflecting underlying integer counts. The positive tail signals high-amenity locations that likely align with central, transit-served corridors, while a lower-amenity cluster indicates suburban or less commercial areas. The relationship with price is positive, with evidence of diminishing marginal returns at very high densities. Given the discrete nature and skewness, nonlinearity and potential saturation effects should be accommodated, and interactions with transit distance are expected where amenity additions yield larger premiums in already accessible neighborhoods.

Spatial coordinates display a compact central cluster with thinner coverage toward the geographic margins and some isolated peripheral points. Prices mapped over latitude–longitude form a clear spatial gradient: higher values concentrate in a central band and decline toward the periphery. This pattern indicates that location effects are strong and nonlinear, and that spatial autocorrelation is likely present in residuals if unmodeled. Peripheral observations, while few, can influence estimated gradients and merit verification and robust handling. Spatial terms derived from latitude and longitude, preferably with smoothers or tensor interactions, are necessary to represent continuous geographic variation.

Bivariate patterns reinforce these themes. Prices decline with increasing MRT distance, and the dispersion is greater near stations where micro-location and amenities differentiate properties more strongly. Jointly, transit accessibility and amenity density produce a pronounced gradient: short distances combined with high amenity levels align with the highest prices, while long distances with sparse amenities align with the lowest. Localized deviations from the dominant gradient appear where other factors, such as unusual age profiles, environmental disamenities, or specific neighborhood effects, dominate; these pockets motivate interaction terms and spatial controls to isolate mechanisms.

Correlation analyses using both Pearson and Spearman measures show consistent signs: price is negatively associated with age and MRT distance and positively associated with amenity density, with spatial coordinates exhibiting systematic relationships to price. Time carries a modest positive association with price and a negative association with age, echoing the compositional link between later sales and newer stock. The spatial variables are strongly interrelated, and accessibility and amenity measures co-vary with coordinates, producing multicollinearity risk that can inflate variance and confound effect attribution. While aggregate patterns indicate an inverse relationship between amenity density and MRT distance, rank-based analysis reveals neighborhood-specific deviations; stratified or partial correlations controlling for spatial position are therefore advisable to separate pure accessibility and amenity effects from spatial confounding.

Taken together, exploratory visualization indicates that price formation is dominated by spatial, accessibility, and amenity forces, moderated by building age and influenced by a non-uniform time trend. The data exhibit nonlinearity (age, distance, amenity saturation), interactions (transit–amenity complementarity; age with location), heteroskedasticity (larger variance near stations), and multicollinearity (among coordinates, accessibility, and amenities). These properties justify the chosen transformations, motivate flexible functional forms and interaction terms, and call for robust and spatially aware validation to ensure that temporal, structural, and location-driven effects are cleanly identified.
Univariate Distributions
This section profiles each variable’s marginal behavior using histograms and boxplots to establish central tendency, dispersion, shape, and the presence of anomalies. The visualizations are applied to variables that have been standardized or centered for analysis, which enables direct comparison of scales and clarifies how negative and positive deviations relate to below- and above-average levels in the sample. The target is evaluated on a log-transformed scale to stabilize variance and compress extreme monetary values. These views provide practical input for preprocessing choices and for the functional forms used in downstream models.

The transaction date exhibits an uneven temporal coverage with a higher density of observations toward later periods and clusters around multiple time bands. After standardization, the distribution centers near zero with moderate spread, and the boxplot indicates continuous coverage without isolated extremes. The late-period imbalance has material implications: time must be controlled to avoid confounding market-level shifts with cross-sectional attributes. Flexible time effects, binning or splines, and interactions with accessibility and amenities are appropriate to reflect evolving premiums within the observation window.

House age shows a multimodal structure consistent with discrete development cohorts and a right-tailed shape, with a trough separating mid-age segments. Boxplots reflect compact dispersion with mild asymmetry and few extreme points, indicating stable sampling alongside cohort heterogeneity. The form implies a nonlinear depreciation pattern and cohort-specific behavior, justifying splines, bins, or threshold effects. Interactions with accessibility and amenities are economically meaningful because transit proximity and retail density can partially offset age-related discounts, while tails warrant robust inference and influence diagnostics.

Distance to MRT presents a centered, predominantly unimodal distribution with moderate dispersion and thinner tails that include a small number of atypically close or far locations. Boxplots suggest near-symmetry with mild tail asymmetry and no isolated outliers, consistent with an urban layout where most properties are at typical walkable distances. The shape supports a monotonic, negative price response and motivates flexible specifications around station-adjacent distances to capture diminishing returns. Rare extreme distances can exert leverage in parametric estimation, recommending checks for robustness and functional form sensitivity.

Convenience-store counts display bimodality, with a lower-amenity mass and a second mode in the mid-amenity range, followed by a thinning upper tail aligned with high-density commercial corridors. Boxplots and strip visuals reveal standardized integer layering, broad heterogeneity, and a longer upper whisker without isolated extremes. The nonlinearity is salient: amenity premiums are expected to rise with density but saturate at very high levels. Joint modeling with transit distance is necessary to quantify complementarity and to manage collinearity risks arising from co-located transit and retail activity.

Latitude is concentrated within a central band, with moderate dispersion and a small number of outlying coordinates on both ends. Histogram and boxplot perspectives indicate mild asymmetry and heavier tails relative to a normal approximation, consistent with a compact study area and limited peripheral coverage. These extremes require verification and robust treatment because spatial coordinates can create high-leverage points. Latitude should be modeled together with longitude and with nonlinear spatial terms to capture continuous geographic gradients in prices.

Longitude exhibits multimodality with a dominant central corridor and a secondary cluster toward the negative side, accompanied by an asymmetric negative tail. Boxplots show several points beyond the lower whisker, indicating a left-skewed spread and a constrained upper range. The pattern implies distinct east–west submarkets and potential boundary effects. Spatial terms and interactions with latitude, transit distance, and amenity density are necessary to account for neighborhood-level heterogeneity and to prevent confounding between location and accessibility.

The log-transformed unit price has a compact, unimodal central mass with mild asymmetry and a small number of low-end and high-end extremes. The log1p transform effectively reduces heteroscedasticity, enabling percentage-based interpretations and facilitating additive modeling of effects. The tails identify properties in atypical structural or locational conditions that warrant verification and robust estimation strategies. These univariate insights motivate nonlinear terms for accessibility and amenities, time adjustment for market phases, and spatial controls to capture neighborhood gradients.

Collectively, the univariate distributions inform several design choices: retain standardized encodings for comparability while preserving original units for interpretation; apply log1p to monetary targets; treat age and amenity effects with nonlinear forms; evaluate interactions between transit access and retail density; include flexible temporal controls; and incorporate spatial smoothers or fixed effects to handle coordinate-driven heterogeneity. Outlier and leverage diagnostics are recommended wherever tails or isolated points appear, and multicollinearity checks are advised for accessibility, amenity, and coordinate features that co-vary by urban structure. These steps translate the marginal shape of each variable into robust preprocessing and modeling specifications.
X1 transaction date
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Figure: Histogram of standardized transaction date showing coverage and late-period imbalance

X1 transaction date serves as the temporal anchor of the dataset, capturing macro conditions and market liquidity at the time of sale. The histogram reveals uneven coverage across the observed window, with a clear imbalance toward later dates: counts are higher in the positive range relative to the negative range, and the distribution exhibits multimodality with peaks around moderately negative values and stronger concentrations in the later period. The standardized center lies slightly right of zero, and dispersion spans a moderate range, indicating that observations are spread across the window but not uniformly. This structure signals that later transactions comprise a larger share of the sample, a pattern compatible with batch collection or rising activity during the latter phase.
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Figure: Box plot of standardized transaction date indicating dispersion and mild skewness

The box plot complements the histogram by showing a centered distribution with the median slightly above the mean, suggesting a marginal tilt toward later transactions. The interquartile range and whiskers indicate moderate dispersion, with mild asymmetry and no isolated outliers. This outlier-free profile supports the reliability of X1 as a control variable and confirms consistent temporal coverage despite the late-period concentration. The shape implies stable sampling across most of the window, while the longer lower tail suggests a modest left skew that reflects fewer early-period observations.

The observed late-period concentration has direct analytical implications. Because market-wide price levels and amenity diffusion typically evolve over time, ignoring temporal imbalance risks attributing broad appreciation or regime shifts to cross-sectional features such as proximity to MRT stations or local retail density. X1 should be included as a continuous trend or via time fixed effects to isolate temporal components from structural and locational effects on Y (log1p). Under typical market dynamics, later dates are expected to align positively with Y, while a negative association between X1 and X2 house age is plausible due to newer stock entering in later periods. Interactions with spatial variables are conceptually relevant: changes in accessibility and neighborhood amenities over time can alter the marginal effects of X3 distance to MRT and X4 number of convenience stores, and the spatial coordinates X5 latitude and X6 longitude can reflect submarket dynamics that shift across the timeline.

From a practical standpoint, modeling should retain the standardized form of X1 for estimation while preserving a calendar mapping for interpretation. Flexible specifications of the time effect, such as splines or piecewise trends, are appropriate to capture local nonlinearity within the observed window. Stratified estimations by time bins and interaction terms between X1 and key covariates (e.g., X3, X4, and spatial coordinates) can reveal whether attribute premiums vary across phases. Follow-up work includes quantifying temporal elasticities through correlation or regression diagnostics, examining structural stability over time, and constructing a price index or rolling median of Y to benchmark trend magnitude. Where relevant, event-style checks aligned to X1 help distinguish genuine market phases from sampling artifacts, thereby improving the attribution of price movements and the robustness of subsequent inference.
X2 house age
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Figure: Histogram of X2 house age highlighting cohort structure, skewness, and trough

X2 house age exhibits a cohorted distribution rather than a single smooth mode. On the standardized scale used here, negative values represent younger-than-average units and positive values represent older stock. The histogram reveals at least two prominent clusters, one near the mean and another at older ages, with a visible trough separating them. The right tail is longer and thinner than the left, indicating right-skew and elevated kurtosis consistent with discrete development waves and an accumulation of legacy stock. The left tail contains a smaller concentration of very new properties relative to the sample mean. These features point to supply heterogeneity across construction periods and suggest that a single linear effect of age would be an oversimplification of its relationship with price and other locational attributes.
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Figure: Box plot of X2 house age showing central concentration and mild right skew

Variability in X2 is moderate with a compact central mass and slightly extended upper whisker, consistent with the right-skew seen in the histogram. The median lies marginally above the standardized center, reflecting a mild predominance of older-than-average units within the interquartile range. The absence of isolated points beyond the whiskers suggests stable sampling without extreme leverage observations; the tails are present but supported by small counts rather than single-point anomalies. This shape implies that while very old stock exists, it does not dominate the distribution, and younger stock is concentrated closer to the center, producing tighter dispersion on the lower side.

The observed cohorting and skewness have direct economic meaning. Age captures physical depreciation and functional obsolescence, so, conditional on location and amenities, a negative marginal association with log-transformed unit price is expected. The trough between cohorts signals potential differences in vintage quality, building codes, or market positioning, implying that depreciation may proceed at different rates across cohorts. Interactions are plausible: older buildings farther from MRT stations may face compounded discounts, while dense neighborhood amenities can partially offset age-related drawbacks. Spatial coordinates further segment these patterns, as historic cores can sustain high prices for older stock due to superior accessibility and services, whereas peripheral older properties align with larger discounts.

These distributional properties motivate flexible modeling of X2. Nonlinear specifications such as splines or cohort indicators are appropriate to capture distinct vintage regimes and potential diminishing effects at very high ages. Given the mild skew and presence of tails, robust estimation or gentle clipping can reduce sensitivity to extreme-aged segments without discarding informative variation. Joint specification with transit accessibility and amenity density, and the inclusion of spatial terms, helps disentangle pure age effects from location-driven premiums. Finally, aligning age with transaction timing ensures cohort composition is not conflated with market-cycle shifts, supporting credible inference on depreciation in the presence of evolving urban conditions.
X3 distance to MRT
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Figure: X3 distance to MRT — Histogram showing a centered, unimodal distribution with moderate dispersion and thinner tails, highlighting the accessibility spread across the sample

X3 distance to the nearest MRT station exhibits a unimodal distribution centered near zero on a standardized scale, where negative values denote closer-than-average locations and positive values denote farther-than-average locations. Most observations cluster within a moderate band around the center (roughly −0.5 to 0.5), indicating that the dataset predominantly comprises homes with typical, walkable-to-moderate access to MRT. The right tail is somewhat heavier than the left, consistent with a smaller share of peripheral properties at longer distances. Sparse bins at the extremes suggest rare, atypically close or distant cases that may act as leverage points in parametric models. In an urban housing context, this pattern is expected: the market is concentrated near the accessibility norm with fewer observations at the very high-access and very low-access ends, which frames X3 as a structurally important locator of convenience and price potential.
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Figure: X3 distance to MRT — Box plot summarizing central tendency, interquartile range, and asymmetric tails without isolated outliers

The box plot corroborates a centered distribution with moderate spread and mild tail asymmetry. The median lies slightly above the standardized center, implying that half of the observations are marginally farther from MRT stations than the mean. The interquartile range spans a compact interval, while whiskers extend farther on one side, reflecting an imbalance in the tails that is consistent with limited but present extreme-access cases. Notably, no isolated points lie beyond the whiskers, indicating stable measurement and the absence of discrete outliers. This shape aligns with an urban layout where only a subset of parcels is immediately station-adjacent, while a longer but thinner tail reaches into less accessible areas.


X3 encodes a canonical accessibility gradient: shorter distances typically command higher willingness to pay on a log-transformed unit price scale, implying a monotonic negative association with the target. Because retail amenities co-locate around transit, X3 also co-varies with X4 number of convenience stores, and with spatial coordinates X5 latitude and X6 longitude along transit corridors and central districts. Such co-variation introduces confounding and multicollinearity risks if not controlled. Temporal interactions with X1 transaction date are plausible where network changes alter effective proximity over time, although such dynamics are not distinguishable in the marginal univariate view.


The tails of X3 require careful handling in modeling and diagnostics. Rare, extremely short or long distances can exert leverage and inflate uncertainty under purely linear specifications. Methodologically, flexible forms for distance (e.g., splines or banding) help capture diminishing returns near stations where accessibility benefits plateau once walkability is secured, while preserving the expected monotonic direction. Robust estimation or conservative tail treatment can stabilize inference without discarding valid yet atypical observations. Given X3’s tight linkage to both amenities and geographic coordinates, specifications should include spatial controls and consider interactions with X4 to quantify compounded accessibility–amenity effects, ensuring that the accessibility spread observed here translates into interpretable and resilient estimates of transit-related premiums.
X4 convenience stores
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Figure: Histogram of standardized X4 convenience stores highlighting two modes and a right-skewed tail

X4 convenience stores measures local retail amenity density and is standardized around zero, so negative values indicate below-average store counts and positive values indicate above-average levels. The histogram exhibits a clear bimodal form with a larger mass below the mean and a second concentration slightly above it, followed by a thinner, extended upper tail. This shape indicates heterogeneous neighborhood types: a prominent segment in lower-amenity environments, a substantial mid-amenity segment, and a small but meaningful high-amenity tail. Mild right skewness and tail thickness suggest pockets of dense commercial activity consistent with urban cores or mixed-use corridors.

The box plot view summarizes central tendency and dispersion while reinforcing the asymmetry of the upper tail. The median lies slightly below the standardized mean, and the interquartile range spans a broad interval, reflecting substantial cross-neighborhood heterogeneity; the longer upper whisker signals positive skewness without isolated extreme outliers. These features align with an amenity premium for housing markets—higher X4 generally associates with higher log-price Y—but the tail behavior implies diminishing marginal gains at very high densities, where additional stores may yield smaller utility increments or introduce congestion and noise.
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Figure: Box plot of standardized X4 showing a median slightly below zero, a wide IQR, and a longer upper whisker indicative of positive skewness
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Figure: Strip plot of standardized X4 illustrating integer-banded structure and sparse high-end and low-end extremes

The strip distribution reveals discrete horizontal bands consistent with integer counts mapped into standardized units, confirming the variable’s count origin. Observations cluster near the center with a modestly longer right tail, and a small number of points occupy the extremes. Such sparse edge cases can exert leverage in parametric estimation and warrant robust treatment or influence diagnostics. Because amenity density co-locates spatially with transit and central areas, X4 is expected to be entangled with X3 distance to MRT and coordinates X5–X6; this raises multicollinearity and confounding risks that call for joint modeling and spatial controls.

The distributional evidence supports a modeling strategy that treats X4 as a nonlinear contributor with potential saturation: spline or quadratic terms capture curvature across low, mid, and high amenity bands, and interaction with transit accessibility (X3) quantifies complementarity between retail density and station proximity. Retaining the standardized representation in estimation while preserving original counts for interpretation improves clarity of reported elasticities. Given the positive tail and discrete layering, recommended checks include leverage and robustness diagnostics, optional winsorization sensitivity tests, and variance inflation assessment alongside latitude–longitude terms to ensure stable, interpretable amenity effects on Y.
X5 latitude
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Figure: Histogram of standardized latitude showing a dominant central band around zero, thinner tails, and mild right skew; supports a continuous north–south corridor rather than distinct submarkets

X5 latitude encodes the north–south position of properties and, under the standardized scale used here, exhibits a unimodal distribution concentrated within a central band near zero. Counts decay toward both tails, with a slightly longer right tail indicating mild positive skew. This pattern is consistent with a compact urban corridor where most transactions occur close to the spatial center, and only a small share lies at peripheral latitudes. The central concentration implies that fine-grained locational differences around the core are likely to explain a substantial portion of price variation, while extreme latitudes represent sparse segments with elevated leverage in parametric estimation.
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Figure: Box plot of standardized latitude with a median near zero, moderate IQR, extended whiskers, and several extreme outliers; highlights heavier tails and potential leverage points

The box plot confirms a median close to zero and a moderate interquartile range, with whiskers extending into the tails and multiple outliers at both extremes. The upper tail reaches slightly farther than the lower, consistent with the mild right-skew observed in the histogram. The extreme points around the far southern and northern edges represent boundary locations within the coverage area. These single-point anomalies can inflate standard errors and distort estimated spatial gradients if untreated, warranting verification of geocoding and consideration of robust methods, winsorization checks, or explicit fringe-area indicators during modeling.

Deviations from the central latitude band co-vary with accessibility and amenity intensity: greater absolute latitude typically aligns with longer distance to the nearest MRT station (X3) and lower convenience-store density (X4), reflecting thinner infrastructure and services at the periphery. Under the log-transformed price Y, this translates into an expected negative relationship with |latitude| when amenities and transit are held constant, while the joint latitude–longitude surface (X5–X6) captures neighborhood-specific premiums. Because spatial effects are inherently two-dimensional and can be nonlinear, latitude should be considered together with longitude using flexible forms to avoid omitted-location bias and multicollinearity with accessibility proxies.

From a methodological perspective, the observed central band with heavier tails supports incorporating non-linear spatial terms (splines or tensor products with longitude), interactions with transit and amenity measures (X3 and X4), and robust treatment of extreme coordinates. Spatial autocorrelation diagnostics and mapping can validate the continuity of the north–south gradient and reveal localized pockets where transit proximity or amenity clusters offset peripheral disadvantages. Complementary feature engineering—such as geodesic distance to identified centers or neighborhood fixed effects—helps stabilize inference and improves interpretability of location premiums across the latitude spectrum.
X6 longitude
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Figure: Histogram of X6 longitude showing multimodality and a pronounced left tail, indicating distinct longitudinal clusters and asymmetry

X6 longitude encodes the east–west position of each property and structures the spatial heterogeneity of the sample. The histogram reveals clear multimodality: a dominant concentration lies around slightly positive longitudes (roughly 0–1), accompanied by a secondary cluster near moderately negative values (around −1.3 to −1.0). The overall span is wide (extending approximately from −3.8 to 2.3), and the distribution is left-skewed due to a longer negative tail. This pattern indicates multiple geographic corridors or submarkets along the longitudinal axis rather than a uniform spread, implying that neighborhood effects, accessibility, and amenity availability vary systematically across longitude bands.

Longitude exhibits asymmetric dispersion with a compact central mass and sparse extremes that likely represent peripheral or boundary areas. The concentration near the main mode suggests an urban core where properties cluster, while the secondary mode indicates a distinct western group consistent with a separate submarket or corridor. Such clustering can align with differences in transport connectivity and retail intensity, making X6 a key organizing variable whose effect on price must be interpreted in concert with other location descriptors and amenities.

The tail behavior is critical for risk and inference. Multiple low-frequency observations populate the negative extreme, whereas the positive side is comparatively constrained, producing an asymmetric profile. These properties can exert leverage in parametric models and may reflect either genuine fringe locations or data entry irregularities; both cases require targeted diagnostics and robust treatment to prevent distortion in estimated spatial gradients.

The business interpretation follows urban spatial mechanics: the central longitudinal band typically co-occurs with shorter distances to MRT stations (X3) and denser retail amenities (X4), while peripheral longitudes tend to align with weaker accessibility and sparser amenities. Consequently, longitude is both a proxy for location quality and a potential confounder of accessibility and amenity effects. Its contribution to Y (log1p) arises through joint spatial structure with latitude (X5), necessitating specifications that capture two-dimensional location effects rather than relying on longitude in isolation.

Longitude’s multimodal and left-skewed form recommends flexible modeling. Nonlinear terms or zone indicators can reflect discrete submarkets, while tensor-product smooths or interaction terms with latitude (X5) can capture continuous spatial gradients. Because amenities and transit access are spatially patterned, joint inclusion with X3 and X4 is essential to avoid attributing their effects to longitude. Variance inflation checks and regularized estimation help mitigate multicollinearity among the spatial variables; spatial cross-validation further guards against overfitting to clustered neighborhoods.

The extreme negative-longitude observations warrant explicit diagnostics. Verifying geocoding, considering fringe-area indicators, and applying robust estimators or cautious winsorization can reduce undue influence without discarding informative spatial boundaries. For interpretability and decision support, mapping partial effects and evaluating partial dependence of Y over longitude, conditional on X5, X3, and X4, clarifies whether the east–west gradient is monotonic within submarkets or varies across corridors defined by the identified modes.

Properties’ east–west positioning also interacts with temporal and structural factors. Market phases (X1 transaction date) can differentially affect central and peripheral corridors, while building age (X2) may be distributed unevenly across longitudes. Accounting for these interactions ensures that observed price differences reflect true spatial premiums rather than composition shifts in time or stock characteristics.

The distributional evidence thus highlights three priorities for analysis: recognize submarket multimodality along longitude; account for the pronounced left tail through robust, spatially explicit modeling; and disentangle longitude from co-located accessibility and amenity drivers to obtain credible, policy-relevant estimates of location effects on unit-area prices.
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Figure: Box plot of X6 longitude highlighting a compact central band, a constrained upper range, and multiple extreme points in the left tail consistent with negative skewness
Y (log1p)
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Figure: Histogram of Y (log1p) showing a unimodal, concentrated center with a mild premium-oriented right tail

Y house price of unit area (log1p) is the log-transformed valuation metric designed to stabilize variance and compress extreme monetary values. The histogram indicates a single, dominant peak and a compact main body, consistent with a well-defined market center and a distribution amenable to inference. Mild positive skewness is present, with a longer right tail that identifies a premium segment, while sparse mass at the far low end suggests only a few distressed or atypical transactions. This post-transform shape supports linear or additive modeling and reduces the influence of untransformed price extremes without obscuring economically meaningful tails.

The central tendency of Y lies around the 3.7–3.8 band on the log1p scale, with density decaying toward both tails and a right tail extending beyond approximately 4.4. Sparse bins below roughly 2.6 and above about 4.5 indicate isolated extremes rather than a multimodal structure, yielding a leptokurtic profile with a prominent central mass. Viewed through robust summaries, the box plot complements this picture: the median sits near 3.65, the interquartile range spans roughly 3.35 to 3.85, and whiskers extend to about 2.6 and 4.4; the lower whisker appears longer than the upper, signaling mild left-skewness by this criterion. These perspectives are not contradictory—histogram binning and box-plot whisker rules emphasize different parts of the tail behavior—jointly indicating near-symmetry with modest tail asymmetries and a small set of leverage points.
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Figure: Box plot of Y (log1p) highlighting a compact IQR, longer lower whisker, and a few low/high single-point anomalies

The premium-oriented right tail aligns with expected price formation mechanisms: exceptional accessibility to MRT (shorter X3) and high amenity density (higher X4) concentrate in the upper end of Y, while older stock (higher X2), weaker transit access (higher X3), and peripheral coordinates (X5, X6) populate the lower tail. The few single-point anomalies at both extremes warrant verification and influence diagnostics, as they can inflate variance and affect parameter stability. On the log scale, differences admit percentage interpretation; for instance, a 0.10 increase in Y corresponds to approximately a 10.5 percent rise in unit price on the raw scale, enabling direct communication of effect sizes.

From an analytical standpoint, the log1p transformation achieves its intended goals: it stabilizes dispersion around the center, preserves informative tails, and supports parsimonious specifications. Nevertheless, tail observations should be handled with care using influence checks, robust estimators, or winsorization if justified by business rules. Downstream modeling should incorporate time controls (X1) to avoid conflating market shifts with cross-sectional features, allow nonlinear responses for accessibility and amenities (X3, X4) to capture diminishing returns in high-access, high-amenity zones, and include spatial terms in X5–X6 to absorb neighborhood gradients. These choices align the distributional properties of Y with reliable inference, sharpen attribution across key drivers, and maintain interpretability on both the log and original price scales.
Bivariate and Spatial
This section evaluates pairwise associations between the log-transformed unit price and individual predictors, and summarizes spatial patterns that condition these relationships. The evidence points to a pricing system dominated by accessibility, amenity density, and geographic position, moderated by building age and a mild market-cycle component. The log1p transformation produces stable dispersion, allowing monotonic and near-linear trends to emerge in several key bivariate views while revealing interaction effects and spatial clustering.

A pronounced inverse association is observed between price and distance to the nearest MRT station. Prices are higher at shorter distances and decline as distance increases, with greater vertical dispersion at very short distances and tighter dispersion at longer distances. This heteroskedastic structure is consistent with micro-location differentiation and amenity bundling near stations. Extreme proximity and very long distances are rare but influential; robust estimation and flexible functional forms (e.g., splines or distance bands) are recommended to mitigate leverage and to capture potential diminishing marginal premiums in the near-station range.

Price rises with amenity density measured by the number of convenience stores, with indications of diminishing returns at high densities. Because the amenity variable is effectively discrete and often standardized, bivariate views display banded levels rather than a continuous gradient, yet the monotonic relationship remains visible. The upper tail in amenity density represents concentrated commercial corridors and prime walkable environments; modeling should allow concavity to reflect saturation and potential externalities (congestion or noise) at very high densities.

Jointly considering transit distance and amenity density reveals a clear interaction: the highest prices occur where MRT access is short and retail density is high, while the lowest prices concentrate in distant, low-amenity contexts. The combined gradient is non-additive; amenity gains yield larger price improvements when accessibility is already strong. Notably, different diagnostics portray distinct co-variation between MRT distance and store density: localized maps and binned surfaces suggest an inverse pattern around station areas, whereas rank correlations can produce a positive global association, implying spatial heterogeneity across corridors and districts. This warrants an explicit interaction term and stratified or spatially controlled checks to correctly attribute effects.

House age exhibits a negative relationship with price, consistent with depreciation, cohort differences, and functional obsolescence. Dispersion widens with older stock, indicating greater heterogeneity in quality and maintenance at higher ages. Nonlinear specifications (splines or cohort indicators) are appropriate to accommodate curvature and potential flattening at very high ages. Interactions with accessibility and amenities are economically plausible: proximity and retail richness can partially offset age-related discounts, especially in established districts.

Temporal patterns show a modest market-cycle component: median logged prices improve around the sample’s central period and soften thereafter, with an overall mild positive association with transaction date. Because the sample is temporally imbalanced toward later transactions, time must be controlled to avoid attributing trend-driven level shifts to cross-sectional attributes. Flexible time terms (splines, breakpoints) or period effects are suitable to capture regime changes without overfitting.

Spatial structure, expressed by latitude and longitude, displays clear clustering of transactions and prices. A central geographic band concentrates higher prices, while peripheral coordinates align with lower prices and sparser amenities. Density maps confirm that sampling is clustered rather than uniform, implying spatial autocorrelation in both predictors and outcomes. Extreme coordinates occur at the geographic fringes and can exert leverage. Spatial terms—such as smooth functions or tensor interactions of latitude and longitude—and spatially aware validation reduce bias from omitted neighborhood effects and prevent optimistic error estimates driven by cluster proximity.

Correlation diagnostics align with urban pricing mechanics. Price correlates positively with amenity density and time, negatively with MRT distance and age, and exhibits a spatial gradient with coordinates. Strong dependence between latitude and longitude and coherent links between coordinates, accessibility, and amenities highlight multicollinearity risk. Moreover, the sign and strength of the relationship between MRT distance and amenity density can differ by diagnostic and geography, underscoring the need for partial correlations that control for space, variance inflation checks, and, where appropriate, regularization to stabilize estimates.

Scatterplot matrices underscore the monotonic forms and reveal structural features: discrete period banding for transaction date, integer banding for amenity counts, and neighborhood clustering for coordinates. A small number of observations deviate from prevailing trends (e.g., unusually high prices at long distances or low prices in amenity-rich areas), reflecting unobserved property attributes or local disamenities. These points necessitate influence diagnostics and, if retained, robust estimation to guard against undue impact on coefficients.

Collectively, these bivariate and spatial findings motivate a modeling specification that: enforces or encourages monotonic effects for transit distance and amenity density; incorporates nonlinearities for age, distance, and amenity density to capture saturation and curvature; includes an explicit interaction between transit distance and amenity density; embeds spatial terms over latitude and longitude to absorb neighborhood gradients; controls for time using flexible functions; and applies multicollinearity diagnostics with potential regularization. Attention to heteroskedasticity near high-access locations and to spatially clustered sampling improves inference quality and supports reliable valuation and policy-relevant insights.
Y vs X3 colored by X4
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Figure: Scatter of Y (log1p) versus distance to MRT (X3) colored by convenience stores (X4); the cloud exhibits a clear inverse relationship, warmer colors clustering at low X3 and high Y, and wider vertical spread at short distances

The visualization displays a pronounced negative association between Y and X3: unit price on the log scale is higher at shorter MRT distances and declines as distance increases. Color encodes amenity density and concentrates warm hues (higher X4) in the high-price, short-distance region, while cooler hues populate the longer-distance, lower-price band. Variance in Y is visibly larger near small X3 and compresses at greater distances, indicating heteroskedastic dispersion concentrated in transit-rich zones. Extreme points at very short or very long distances follow the same logic and do not form contradictory clusters.

To quantify the inverse slope, a semi-elastic specification in log space is appropriate, modeling Y as a function of X3 while controlling for confounders. A flexible functional form should be preferred to allow curvature, for example a spline or piecewise linear term with a knot near the average-distance boundary, recognizing that marginal premiums may diminish once walkable access is secured. Complementary nonparametric smoothers or binned medians can be used to verify monotonicity. Partial residual or accumulated local effect curves that condition on transaction date (X1), house age (X2), and spatial coordinates (X5, X6), as well as X4, provide a cleaner estimate of the distance effect by mitigating confounding from time, vintage, and neighborhood context.

The fan-shaped cloud indicates heteroskedasticity: at low X3 the vertical spread of Y is wider, reflecting greater price differentiation in transit-adjacent submarkets where micro-location, building quality, and amenity bundles vary more. Diagnostic tests such as Breusch–Pagan or White can substantiate variance–covariate dependence after fitting baseline models. Remedies include heteroskedasticity-robust standard errors, weighted least squares with variance weights as a function of X3 (or fitted values), and quantile regression to characterize the entire conditional distribution. While the log1p transform stabilizes variance relative to raw prices, residual dispersion remains non-constant across the distance spectrum and should be explicitly accommodated.

The color mapping of X4 highlights a synergistic structure: higher amenity density coincides with short MRT distances and higher prices, suggesting an interaction between accessibility and amenities. Estimation should therefore include an X3×X4 term to capture complementarity, alongside appropriate regularization or variance-inflation checks due to interdependence with spatial coordinates. Interpreting the interaction in log space yields multiplicative insights: the amenity premium is expected to be larger at short distances and attenuated at long distances, consistent with the observed gradient. Stratified fits by X4 bands or marginal-effect surfaces can further clarify how the distance penalty varies across amenity levels.

A small number of high-price observations at very short distances and low-price observations at long distances behave as leverage points despite aligning with the overall pattern. Influence diagnostics (e.g., Cook’s distance, leverage) and robust estimation can protect slope and interaction estimates from undue sensitivity, while guardrails against mechanical winsorization preserve genuine premium signals near stations. Verification of geocoding and feature coding for these extremes helps distinguish data quality issues from valid micro-market phenomena.

From a decision perspective, the chart implies two practical consequences. First, distance to MRT exerts a strong, monotonic discount on unit-area price, with the steepest and most variable price outcomes concentrated in the closest band; forecasting systems should expect wider prediction intervals in transit-rich areas and narrower ones in peripheral zones. Second, amenity density amplifies the accessibility premium, reinforcing the need to co-model transit and retail context and to include spatial terms to separate neighborhood effects from pure proximity. These findings motivate specifications that combine flexible distance effects, interaction with amenities, heteroskedasticity-aware inference, and controls for time, age, and coordinates to obtain unbiased and operationally meaningful estimates of accessibility-driven price gradients.
X3×X4 vs Y heatmap
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Figure: X3×X4 binned heatmap colored by median Y (log1p); interaction gradient between transit distance and amenity density
The binned heatmap of MRT distance (X3) by convenience-store count (X4), colored by median unit-area price Y on the log1p scale, exhibits a clear gradient: cells with shorter distances and higher amenity density show warmer tones (higher medians), whereas cells with longer distances and sparse amenities show cooler tones (lower medians). A diagonal structure is visible across the plane, with X3 increasing as X4 decreases, consistent with urban clustering of retail around transit. The overall color pattern is monotonic along both axes—Y declines with greater X3 and rises with larger X4—and the distribution of warm cells is concentrated rather than uniform, yielding a right-skewed appearance in the sense that high-price bins are fewer and localized.

The observed surface indicates a non-additive, complementary relationship: transit accessibility and amenity density jointly amplify price premiums beyond the sum of their separate effects. The highest valuations concentrate in the upper-left region of the grid (low X3, high X4), while premiums attenuate rapidly toward the lower-right (high X3, low X4). Localized bins that deviate from the global gradient—higher-than-expected medians in less accessible or less amenity-dense cells, and lower-than-expected medians in otherwise favorable cells—plausibly reflect the influence of other drivers, including building age (X2), transaction timing (X1), and specific spatial coordinates (X5, X6). These pockets underscore confounding risks and the need to control for colocation and market phase when quantifying the interaction.

Methodologically, the use of binned medians stabilizes the visualization against outliers and heteroskedasticity, making the underlying gradient interpretable. To quantify it, models should include an explicit X3×X4 interaction and allow nonlinearity (e.g., spline terms for distance and piecewise or smooth functions for amenity counts). Two-dimensional partial dependence or generalized additive models with tensor-product smooths can recover the surface implied by the heatmap and test whether marginal returns to added stores diminish faster near very short MRT distances or at high amenity densities. Because X3 and X4 co-vary spatially, specifications should incorporate spatial fixed effects or latitude–longitude smoothers to reduce multicollinearity and isolate the pure transit–amenity mechanism; time and age controls are necessary to separate market-cycle and depreciation influences from location value.

From an applied perspective, the gradient supports transit-oriented and amenity-focused valuation and planning. Properties in transit-rich, retail-dense micro-markets command the highest unit-area price on the log scale, suggesting that amenity investments yield larger gains where accessibility is already strong, while isolated retail additions in peripheral, transit-distant areas deliver limited price impact. For risk management and model robustness, audit anomalous cells to verify data quality and identify unmodeled factors, perform sensitivity analyses with alternative binning schemes, and adopt time-aware validation to ensure the interaction effect persists across periods and neighborhoods. These steps translate the visual evidence into actionable modeling features and location strategies aligned with the joint premium captured in the heatmap.
Y over lat–lon
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Figure: Spatial distribution of Y (log1p unit price) over latitude–longitude, highlighting a central high-price cluster and outward gradients to lower-price peripheries

The geographic mapping of Y across latitude and longitude reveals a pronounced spatial gradient: unit-area prices concentrate in a central cluster and decline toward peripheral coordinates. Within the central band, colors shift to warmer tones, indicating higher valuations, while cooler tones dominate at the edges, consistent with location-driven discounts. Localized peaks appear inside the central area rather than uniformly across all central coordinates, implying micro-neighborhood effects. A small number of points at extreme coordinates exhibit markedly lower prices; these are spatially isolated cases that can exert leverage in model fitting and merit diagnostic attention.

This pattern aligns with established urban mechanisms. Central coordinates typically co-locate with stronger accessibility and amenity provision—shorter distance to MRT stations (lower X3) and higher convenience-store density (higher X4)—which capitalizes into higher Y. Conversely, peripheral areas tend to feature longer transit distances and sparser amenities, mapping to lower Y. Interactions with structural attributes can modulate these gradients: older stock (X2) in amenity-rich cores may sustain higher prices, whereas similar vintage in low-access, low-amenity peripheries accentuates discounts. The spatial organization suggests autocorrelation in Y and potential heteroskedasticity across locations, with variability shaped by micro-location characteristics in central corridors and by broader accessibility gaps at the edges.

To capture these effects robustly, modeling should include explicit spatial terms for latitude–longitude, using flexible forms (e.g., tensor-product smooths or spatial kernels) to represent continuous location premiums and local peaks. Interactions between coordinates and accessibility/amenity variables (X3, X4) are necessary to quantify how transit proximity and retail density amplify or attenuate location effects, and to reduce omitted-variable bias from spatially patterned covariation. Peripheral and isolated points should be validated and, if retained, handled with robustness measures to limit leverage on estimated gradients. Residual mapping and spatial autocorrelation diagnostics can verify whether the specified terms adequately absorb location structure, while incorporating transaction date (X1) allows temporal shifts within spatial segments to be separated from cross-sectional location effects.
Lat–lon density
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Figure: Bivariate density of longitude versus latitude highlighting a dominant central hotspot, secondary pockets, and sparse peripheral coverage

The bivariate density of geographic coordinates exhibits a pronounced central hotspot concentrated in a band of modestly positive longitude and latitude, with additional, smaller pockets of density around moderately negative longitude at near-zero latitude and near-zero to positive longitude at slightly negative to positive latitude. Coverage decays rapidly outside these areas, producing long, sparse tails toward the western and southern margins and isolated bins at extreme coordinates. The resulting pattern is clustered and multimodal, with evident spatial skewness and elevated kurtosis around the main hotspot rather than a uniform spatial footprint.

This concentration is consistent with an urban core where transactions are frequent and the built environment is denser, contrasted with peripheral zones where observations are sparse. Because location co-determines accessibility and amenities, the central cluster is expected to co-vary with shorter distances to MRT stations and higher convenience-store densities, while peripheral tails align with weaker accessibility and fewer amenities. Such covariation implies potential collinearity between the coordinate pair and accessibility/amenity variables and foreshadows spatial autocorrelation in the target even after log transformation, as neighborhoods with dense services tend to sustain systematically higher unit-area prices.

From a methodological perspective, the observed clustering warrants explicit spatial controls to avoid omitted-location bias and overfitting to dense regions. Two-dimensional location effects should be modeled using flexible terms (e.g., tensor-product smooths, thin-plate splines, or spatial basis functions), complemented by interactions between coordinates and accessibility/amenity variables to capture neighborhood-specific gradients. Peripheral observations with low local support should be verified for geocoding integrity and treated with robust estimation to limit leverage. Given the clustered sampling, spatial cross-validation or block-based validation is recommended to provide realistic generalization estimates and to mitigate optimistic bias from geographically proximate training–test splits.

Operationally, these density features motivate spatial feature engineering and diagnostics. Neighborhood identifiers or geohash-level encodings can capture discrete submarket effects, while distance-to-central-corridor or CBD measures summarize the continuous gradient implied by the hotspot. Diagnostic checks should include tests for spatial autocorrelation in residuals, assessment of multicollinearity among coordinates and accessibility/amenity variables, and sensitivity analyses that downweight or stratify peripheral bins. Together, these steps align the modeling design with the empirical spatial structure, improving attribution of price drivers and stabilizing inference across both core and fringe areas.
Y over X1
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Figure: Median log1p unit price over standardized transaction date (binned), revealing a trough prior to the reference date, a sharp rise to a short peak shortly after, followed by a mild easing

The binned-median trajectory of Y against X1 exhibits a non-monotonic short-run pattern: an early decline toward a local trough, a pronounced upswing as the series approaches the standardized reference date, a brief plateau at the peak in subsequent bins, and a gentle easing thereafter. The path remains within a relatively narrow vertical band on the log1p scale, indicating limited dispersion of central tendency over time and the stabilizing effect of the transformation. The visible inflection near the reference date is consistent with a level shift rather than idiosyncratic spikes, and there is no clear periodicity at the displayed resolution.

Interpreting these dynamics requires accounting for both market-wide movements and compositional shifts in the transacted stock. Later dates are more heavily represented in the dataset, and medians help mitigate but do not eliminate the influence of that imbalance. Changes in the mix of properties—such as relatively newer units, evolving transit accessibility, or rising amenity density—can lift median prices independently of pure time effects. Conversely, the mid-sample trough may reflect softer macro conditions or a temporary shift toward lower-priced segments. Because Y is on a log1p scale, differences along the curve correspond to proportional changes in raw prices, reinforcing the practical significance of even modest log movements.

For estimation and inference, the observed curvature supports modeling X1 with flexible forms, such as splines or piecewise trends with a breakpoint near the inflection, or with period fixed effects if binning is preferred. Time controls should be included whenever comparing cross-sectional attributes to prevent attributing market-wide shifts to location or structural features. To separate temporal regime change from changing composition, specifications should jointly control for age (X2), accessibility (X3), amenities (X4), and spatial coordinates (X5, X6), and test interactions between X1 and key location variables to detect evolving premiums. Structural-break tests around the apparent transition point, rolling medians or indexed benchmarks, and sensitivity checks to bin width and weighting by period counts enhance robustness.

Operationally, date-specific benchmarks are advisable for pricing and appraisal workflows, especially across the pre- and post-peak bins. Time-aware validation—using rolling-origin splits—guards against optimistic performance driven by the late-period concentration. Where policy changes or infrastructure rollouts coincide with the inflection, event-style checks aligned to X1 can clarify whether the shape reflects genuine market strengthening or sampling shifts. Maintaining a mapping from the standardized time index to calendar months aids interpretation and communication of the estimated short-run trend.
Correlations
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Figure: Pearson correlation matrix across Y (log1p) and X1–X6 highlighting linear association structure

The Pearson matrix indicates a coherent linear association pattern: price correlates positively with neighborhood amenities and negatively with weaker transit access and physical depreciation. Specifically, Y (log1p) aligns positively with X4 number of convenience stores and exhibits a negative correlation with X3 distance to the nearest MRT station, consistent with accessibility and amenity premiums. The association between Y and X2 house age is negative, reflecting depreciation, while X1 transaction date shows a small positive relationship with Y compatible with a mild upward market phase. Spatial context is prominent: X5 latitude and X6 longitude both display positive linear links with Y and are strongly correlated with each other, revealing a shared geographic axis within the study area. These patterns combine into two blocks—an accessibility–amenity cluster and a spatial coordinates cluster—whose internal coherence underscores the dominance of location in price formation. The log1p transformation of Y reduces skewness, yielding stable linear correlations. Methodologically, the strong interdependence among spatial variables and amenities raises multicollinearity risk; regression designs should therefore employ variance inflation checks, spatial basis terms, or regularization to maintain interpretability and control estimator variance.
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Figure: Spearman rank correlation matrix capturing monotonic relationships and robustness to nonlinearity

The Spearman matrix confirms the directional relationships while revealing rank-based nuances and potential nonlinearity. Y shows a moderate positive association with X4 and X1, and a moderate negative association with X2 and a mild-to-moderate negative association with X3, reinforcing amenity premiums, temporal uplift, depreciation, and accessibility discounts in monotonic terms. A location gradient is evident: Y is slightly positive with X5 latitude and negative with X6 longitude, implying east–west asymmetry not captured by purely linear effects. Two structural blocks persist—the accessibility/amenity pair and the spatial coordinates pair—with a particularly strong internal dependence between X5 and X6 that can propagate collinearity if untreated. Notably, X3 and X4 display a positive monotonic relationship in ranks, deviating from the typical inverse pattern; this suggests spatial heterogeneity where retail corridors may emerge away from rail lines or alternative transport networks influence amenity placement. Additionally, X1 is negatively associated with X2, consistent with newer stock appearing later in the sample window. These rank-based signals motivate stratified and spatially controlled analyses to separate neighborhood composition from pure accessibility effects.

The combined Pearson–Spearman perspective clarifies both linear and monotonic dependencies and guides specification choices. For modeling, the observed correlations support including X1 (time), X2 (age), X3 (accessibility), X4 (amenities), and spatial terms derived from X5–X6, while mitigating multicollinearity through dimensionality reduction (e.g., rotated coordinates or spatial embeddings), regularization, or neighborhood fixed effects. To isolate mechanisms, partial correlations and rank-based partials controlling for latitude and longitude can distinguish accessibility from location, and time-stratified correlation checks can decouple market-cycle effects from cross-sectional structure. Given the rank-level indication of nonlinearity and saturation, spline or piecewise forms for X3 and X4 are appropriate; interaction terms (e.g., X3×X4) should be evaluated to capture joint premiums. These steps translate correlation evidence into robust, interpretable designs for subsequent hypothesis tests and modeling.
Scatterplot Matrix
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Figure: Scatterplot matrix of X1–X6 and Y (log1p), screening pairwise forms, banding, and anomalies

The scatterplot matrix provides a comprehensive screening of pairwise relationships among transaction date (X1), house age (X2), distance to MRT (X3), convenience stores (X4), latitude (X5), longitude (X6), and the log-transformed unit price Y. Visually, Y exhibits tighter and more linear-looking associations with several predictors due to the log1p transform, while discrete banding appears where variables are integer- or period-based (notably X4 and X1). Spatial coordinates form clustered patterns consistent with neighborhood groupings. At a high level, accessibility and amenities align with higher values of Y, depreciation aligns with lower values, and time contributes a mild upward shift, confirming the expected structure of urban price formation.

Pairwise panels with Y reveal consistent monotonic trends. Against X2, Y declines as age rises, and dispersion widens among older properties, indicating greater heterogeneity in the mature stock. Against X3, Y falls strongly and monotonically with increasing distance, supporting an accessibility premium for MRT proximity. Against X4, Y increases with the number of convenience stores, with a visibly steeper gradient in the lower-to-mid amenity range and mild saturation at the highest levels, suggesting diminishing returns. Against X1, the association is mildly positive, consistent with a modest price drift across the sample period. With spatial coordinates X5 and X6, Y aligns with location clusters, indicating that neighborhood effects structure a substantial portion of price variation.

Cross-predictor panels diagnose structural co-variation and potential confounding. X3 and X4 display an inverse association, reflecting that amenity-rich areas tend to be closer to transit. Latitude and longitude align jointly with both accessibility and amenities, producing a coherent spatial bundle that can drive multicollinearity if modeled naively. Period-based banding in X1 and integer banding in X4 produce a lattice-like appearance across several panels rather than uniform clouds, an expected artifact of time indexing and count variables. Single-point deviations are visible, including unusually high prices at long distances and unusually low prices in amenity-rich contexts; these break local trends and likely reflect unobserved property-specific attributes or localized disamenities.

The matrix motivates specific modeling choices to capture observed form while managing risks. Nonlinear specifications are warranted for X2 to accommodate curvature and for X4 to capture saturation, while a strictly monotonic decreasing effect for X3 is supported by the visual gradient. Interaction terms, especially between X3 and X4, are justified by the joint pattern of accessibility and amenities. Spatial terms based on X5–X6 are necessary to absorb location clustering and to reduce omitted-location bias. Given the visible co-location of transit, amenities, and coordinates, variance inflation and identifiability should be managed via regularization, spatial fixed effects, or dimension-reduced spatial encodings.

From a diagnostic standpoint, the matrix confirms that the log1p transform of Y compresses the right tail and stabilizes pairwise dispersion, improving the visibility of linear and monotonic components. It also flags heterogeneity pockets—older age segments and extreme accessibility ranges—where variance increases and robust estimation or targeted outlier checks are prudent. Overall, the visual evidence prioritizes accessibility, amenities, and spatial positioning as primary drivers, with age as a strong moderating factor and time as a secondary trend; these insights guide subsequent feature design, interaction testing, and specification of monotonicity and nonlinearity constraints.
Hypotheses and Tests
This chapter formulates the substantive effects suggested by exploratory evidence and defines a testing framework to evaluate them on the log-transformed target. The hypotheses focus on accessibility (distance to MRT), local amenities (convenience store density), physical depreciation (house age), spatial gradients (latitude–longitude), and short-run temporal movement (transaction date). All tests are conducted with Y house price of unit area on a log1p scale, controlling for concurrent drivers to isolate partial effects and minimize omitted-variable bias.

Accessibility premium (X3 distance to MRT). The working claim is a monotonic penalty with increasing distance. Null hypothesis: the partial association between Y (log1p) and X3 is zero or non-negative after controls; alternative: Y decreases as X3 increases, with possible diminishing marginal penalties near very short distances. Planned tests include: sign and significance of the X3 coefficient in a multivariate regression with log1p(X3); a flexible smooth term for X3 in a GAM to detect nonlinearity; constrained monotonic gradient in a gradient-boosted tree with X3 constrained to decrease; and rank-based checks (Spearman, partial Spearman conditioning on X1, X2, X4, X5, X6). Heteroskedasticity is evaluated because price dispersion often widens at very short distances.

Amenity premium (X4 number of convenience stores). The working claim is a positive, concave relationship. Null hypothesis: the partial association between Y and X4 is zero or non-positive after controls; alternative: Y increases with X4, with diminishing returns at higher densities. Planned tests include: linear and quadratic terms for X4 in a regression; a smooth term for X4 in a GAM to assess concavity; monotonic increasing constraint for X4 in boosted trees; and partial correlation analyses controlling for X3 and spatial coordinates. An interaction with X3 is explicitly tested to quantify transit–amenity complementarity.

Depreciation (X2 house age). The working claim is a negative, nonlinear age effect reflecting physical and functional obsolescence. Null hypothesis: the partial association between Y and X2 is zero or non-negative after controls; alternative: Y decreases as X2 increases, potentially with curvature or cohort effects. Planned tests include: sign and significance in linear models; spline-based smooths in a GAM to capture nonlinearity; and robustness to interactions with location (X2×X5, X2×X6) to detect spatially varying depreciation. Given the log target, slope estimates translate into approximate percentage changes per unit or per interquartile shift in age.

Spatial heterogeneity (X5 latitude, X6 longitude). The working claim is that location contributes systematic variation beyond accessibility and amenities. Null hypothesis: no residual spatial structure remains after controlling for X1–X4; alternative: spatial terms significantly improve fit and reduce residual spatial autocorrelation. Planned tests include: adding a tensor-product smooth of latitude–longitude in a GAM and testing its joint significance; comparing models with and without spatial terms on validation error; and computing spatial autocorrelation of residuals (e.g., Moran’s I) to assess remaining structure. Sensitivity to alternative spatial encodings (e.g., neighborhood bins or rotated axes) is examined to mitigate multicollinearity between coordinates.

Short-run time trend (X1 transaction date). The working claim is a mild upward phase within the limited 2012–2013 window, potentially with a local level shift. Null hypothesis: no temporal trend after controls; alternative: a positive slope or a piecewise change in level. Planned tests include: linear and spline specifications for X1 in a multivariate setting; break detection via comparing pre/post bins or piecewise fits; and verification that temporal effects remain after controlling for composition (X2–X6). All inference uses time-aware validation to avoid leakage.

Joint specification and interactions. Because accessibility, amenities, and spatial position co-vary, tests are conducted in models that include X1–X6 concurrently, with specific interaction terms where theory indicates complementarity or moderation (notably X3×X4 and age-by-location terms). This design separates mechanism-driven effects from spatial fixed effects and reduces bias from correlated location attributes.

Estimation and validation design. Three complementary model classes are used to triangulate evidence: ElasticNet for linear, regularized inference on signs and relative magnitudes; monotonic gradient-boosted trees to encode prior monotonicity for X3 and X4 and explore interaction structure; and a GAM with univariate smooths and a latitude–longitude tensor to capture nonlinear and spatial effects. All models operate on the preprocessed features outlined earlier, including log1p transforms where specified, and are evaluated under a time-aware split (e.g., rolling or 70/15/15 by date). Metrics emphasize log RMSE and R², with back-transformed error summaries reported via smearing when needed.

Statistical tests and decision criteria. For parametric terms, two-sided tests at a conventional alpha are applied; for smooths, approximate F-tests or effective degrees of freedom significance guide inclusion. Rank correlations and partial correlations provide nonparametric corroboration of directionality. Effects are deemed validated when (i) direction and significance align with the alternatives across specifications, (ii) shapes are consistent with theory in flexible models, and (iii) estimates are stable under robustness checks. When multiple related hypotheses are evaluated, false discovery control is considered at the family level.

Robustness and sensitivity analyses. Planned checks include: alternative scalings for X3 and X4 to test functional-form dependence; trimming or robust estimation to limit leverage from extreme distances or prices; stratification by time bins to separate trend from cross-section; alternative spatial controls (coarse neighborhood fixed effects versus smooth surfaces); and multicollinearity assessment (VIF, pairwise correlations) with mitigation via regularization or feature reduction.

Assumptions, risks, and limitations. Inference assumes that residual dependence is controlled; spatial clustering and limited temporal span can inflate apparent significance if ignored. The narrow 2012–2013 window limits generalization of time effects, and spatial concentration raises the risk that accessibility and amenity coefficients partially proxy for unobserved neighborhood factors. These risks are addressed through explicit spatial terms, interaction modeling, robust errors, and time-aware validation. Effects that fail stability or specification checks will be reported as inconclusive rather than forced into acceptance.
Accessibility premium
This subsection evaluates the accessibility premium by testing whether unit-area price on the log scale decreases as distance to the nearest MRT station increases. Descriptively, distance exhibits a centered, moderately dispersed distribution whose left tail represents very close access and right tail marks peripheral locations. Across the distance spectrum, prices cluster at higher levels for shorter MRT distances and compress into lower bands as distance grows, with visibly greater dispersion near very short distances. These features are consistent with urban accessibility theory: reduced travel time and enhanced connectivity are capitalized into higher valuations, and fine-grained micro-location differences amplify variability where access is strongest.

The economic mechanism linking distance to price is monotonic and plausibly concave. On the log-transformed price scale, marginal reductions in MRT distance translate into proportional premiums, with the steepest gains expected when moving from poor to adequate access and diminishing returns as walkability becomes assured. This shape aligns with the observed heteroskedasticity: markets close to stations exhibit wider price dispersion because additional amenities, environmental factors, and building quality differentiate otherwise highly accessible locations. Conversely, far-from-station areas tend to homogenize at lower valuation levels, reflecting reduced convenience and fewer complementary amenities.

A formal testing plan proceeds from rank-based and moment-based checks to multivariate confirmation. First, compute Spearman rank correlation between Y (log1p) and X3; a negative, statistically significant coefficient supports a monotonic decreasing association robust to nonlinearity. Complement this with Pearson correlation to capture linear alignment on the transformed scales. Second, assess binned medians of Y across increasing X3 bands; a consistently declining profile across bins constitutes nonparametric evidence against a flat or increasing pattern. These steps establish direction without imposing functional form, providing a conservative baseline for the hypothesis that price decreases with distance.

To validate the effect conditionally on confounders, estimate a log-linear hedonic specification with Y (log1p) regressed on X3 alongside transaction date (X1), house age (X2), local amenity density (X4), and spatial coordinates (X5 latitude, X6 longitude). Employ heteroskedasticity-robust standard errors, given the wider variance near short distances. The focus is on the sign and monotonicity of the partial effect of X3 after controlling for time, depreciation, amenities, and neighborhood location. To accommodate curvature, fit a generalized additive model with a smooth, monotone-decreasing term for distance, and cross-check with a gradient boosting model under an explicit monotonic constraint on X3. Partial dependence and accumulated local effect profiles from these models should display a nonincreasing shape, confirming the accessibility premium across flexible representations.

Distance-induced nonlinearity and interaction effects warrant targeted specification. Given the co-location of retail amenities with transit, include an X3×X4 interaction to capture complementarity: the premium from shorter distance is larger in amenity-dense contexts, while amenity additions yield limited gains where distance remains high. Model curvature in X3 with splines or distance bands to reflect diminishing marginal price gains near stations. Heteroskedasticity detected at low distances suggests robust inference procedures and, where necessary, quantile-oriented diagnostics to verify that the negative gradient persists across the distribution of prices. Extreme-distance observations can exert leverage; preprocessed transformations of X3 (e.g., log1p distance) and outlier clipping stabilize estimation without altering the direction of the effect.

Confounding controls are essential to isolate accessibility from correlated location attributes. Spatial coordinates often co-vary with both distance and amenities; variance inflation checks help identify redundancy when raw latitude and longitude, distance, and amenity density enter simultaneously. Temporal imbalance in transactions can shift average price levels; including X1 as a trend or flexible time component prevents attributing market-wide movements to cross-sectional distance effects. Residual diagnostics should verify that adding X3 reduces systematic structure in errors, particularly around transit corridors and peripheral zones.

Taken together, the descriptive evidence and the proposed tests support a consistent accessibility premium: unit-area log prices decrease as distance to MRT increases, with the strongest marginal effects at transitions from poor to adequate access and attenuated gains near station adjacency. For valuation, investment screening, and policy appraisal, encoding a monotone-decreasing distance effect, allowing nonlinearity, and modeling interaction with amenities produces stable, interpretable estimates of the premium. In operational terms, shorter MRT distances, especially in amenity-rich neighborhoods, align with higher prices and greater dispersion due to micro-location differentiation; properties remote from stations exhibit lower, more homogeneous valuation bands. Robust modeling that respects monotonicity and controls for time, age, and spatial heterogeneity provides credible confirmation of the accessibility premium and safeguards against confounding-driven bias.
Amenity premium
This subsection tests the amenity premium hypothesis: holding time, building age, transit accessibility, and location constant, the unit-area price in log-space increases with the number of nearby convenience stores and exhibits diminishing marginal returns at higher amenity density. Exploratory visuals indicate a positively skewed, bimodal distribution of the amenity measure with a long upper tail, and consistent monotonic associations between higher amenity density and elevated prices. These patterns are economically plausible because local retail availability reduces daily travel costs and enhances neighborhood utility; however, diminishing returns are expected as incremental stores add less marginal utility and may introduce congestion or noise externalities.

Identification requires conditioning on co-varying attributes that jointly shape both amenity density and price. Amenity counts correlate with transit proximity and spatial coordinates, and they shift over time with market development. To isolate the amenity premium, estimation should include controls for transaction date, house age, distance to MRT, and a flexible spatial term in latitude–longitude. This specification mitigates omitted-variable bias arising from spatial clustering of amenities around transit corridors and central neighborhoods and separates temporal composition shifts from cross-sectional amenity effects.

A parametric baseline can quantify the premium and concavity. In a log-linear model for the target, include a standardized amenity term and its square: the expected signs are positive for the linear term and non-positive for the quadratic term. A joint Wald test on these coefficients assesses both the existence of an amenity premium and diminishing returns. Model selection criteria comparing the linear versus quadratic specification further indicate whether curvature materially improves fit. Coefficients on the log scale are interpretable as approximate percentage changes in unit price per standard deviation change in the amenity measure, recognizing that standardization of the amenity variable requires back-mapping to raw counts for business communication.

A semi-parametric approach offers a shape-flexible check. Fit a generalized additive model with a smooth term for the amenity variable and tensor or spline terms for spatial coordinates, while keeping linear controls for time, age, and MRT distance. Inspect the estimated smooth and its first derivative across the observed amenity range; a positive derivative that declines toward zero as amenity density rises is consistent with diminishing returns. Formal tests can be conducted by comparing the smooth against a linear term via likelihood-ratio or restricted likelihood ratio tests, and by testing for monotonicity or concavity using constrained smoothers where appropriate.

Tree-based models with monotonic constraints provide a complementary, model-agnostic validation. Gradient-boosted trees constrained to be non-decreasing in amenities can recover a partial dependence curve for the amenity variable in the presence of complex interactions. Evidence of a rising but flattening partial dependence with widening confidence bands at the upper tail supports the diminishing-returns hypothesis. Because amenities co-vary with transit and location, two-dimensional partial dependence over amenity and MRT distance can reveal complementarity—larger premiums where both transit access and amenity density are strong—while ensuring the marginal amenity effect remains positive across most of the joint domain.

Interaction tests assess whether the amenity premium varies with accessibility, building age, and time. Introducing an interaction between amenities and MRT distance clarifies whether additional stores yield higher benefits in transit-rich areas, or instead compensate where transit is weaker. Interactions with house age test whether amenities partially offset depreciation for older stock, and interactions with transaction date detect temporal shifts in the premium, for instance during phases of retail expansion or market tightening. These moderation effects should be evaluated with appropriate centering and plotted marginal effects to avoid misinterpretation in standardized units.

Robustness checks focus on distributional and spatial risks. Because the amenity variable is integer-valued and standardized, discretization can induce stepwise patterns; spline-based or monotonic models accommodate this without forcing linearity. The long right tail calls for influence diagnostics or robust estimators to prevent a small number of high-amenity neighborhoods from dominating inference. Multicollinearity with spatial coordinates and transit distance should be assessed via variance inflation metrics or examined through regularized models such as ElasticNet, ensuring coefficient stability and credible partial effects. Spatial cross-validation and clustered or heteroskedasticity-robust standard errors are appropriate to address spatial autocorrelation and variance heterogeneity.

Decision-oriented reporting should translate estimates from standardized to raw units. On the log-price scale, the amenity coefficient approximates a proportional premium; back-transforming allows communication as a percentage increase in unit price per additional convenience store within the relevant range. Where curvature is established, marginal effects should be summarized across amenity bands (e.g., low, medium, high density) to convey the saturation profile. Together, these steps provide a rigorous, transparent test of the amenity premium, quantify its magnitude under realistic controls, and delineate the range over which additional retail presence materially enhances residential value.
Depreciation
This section formalizes the depreciation hypothesis: holding location, accessibility, amenities, and transaction timing constant, the log-transformed unit price decreases as house age increases, with a nonlinear gradient. Economic rationale and prior distributional evidence point to physical wear, functional obsolescence, and cohort differences that produce a monotonic but potentially concave relationship on the log scale, where marginal discounts may attenuate at very high ages or differ across construction vintages.

Identification requires isolating age effects from confounders that co-vary with age. Transaction date is negatively associated with age because later transactions tend to feature newer stock; failing to control for time would bias the estimated age slope toward zero or even reverse it during appreciating market phases. Spatial coordinates capture neighborhood fixed effects that are correlated with both age and price, and accessibility (distance to MRT) and amenity density (convenience stores) jointly stratify urban quality. The testing framework therefore conditions on X1, X3, X4, and the spatial pair X5–X6 to attribute residual variation in Y to age rather than to location or market timing.

Model specifications are organized around a linear baseline and a flexible nonlinear alternative for the age effect. The baseline includes a linear age term in a log-linear hedonic regression with time controls and location terms; the alternative replaces the linear term with a smooth function of age (e.g., cubic spline or penalized spline in a GAM). Evidence of nonlinearity is assessed via nested model comparisons (likelihood ratio tests where applicable), information criteria, and out-of-sample performance under time-aware validation. Because theory and exploratory findings support a monotonic decrease, shape constraints can be incorporated in tree-based models with monotonic regularization or via isotonic postprocessing of the age partial dependence to enforce nonincreasing behavior without overfitting noise.

Interaction diagnostics evaluate whether depreciation varies by accessibility and amenity context. Older stock may be discounted more severely in transit-distant areas and less so in high-amenity environments if local services compensate for age-related drawbacks. This is tested by including interactions between age and distance to MRT, and between age and convenience store density, or by using varying-coefficient smooths that allow the age gradient to shift with X3 and X4. Spatial heterogeneity is addressed by combining a smooth age term with a two-dimensional spatial component over latitude and longitude to separate pure age effects from neighborhood-specific premiums.

Estimation and validation procedures reflect the transformed target and temporal structure. Models are trained on log1p(Y), and performance is reported in log-RMSE and R²; when needed for communication on the original price scale, predictions are back-transformed using a smearing adjustment to correct retransformation bias. Validation uses time-aware splits to respect chronology and avoid leakage from future periods. Residual diagnostics assess whether the age smooth captures curvature adequately, checking for remaining systematic patterns at low and high ages.

Data preparation choices follow the established preprocessing: age is coerced to numeric, implausible negatives are treated as missing, and robust scaling or clipping reduces undue leverage from extreme values without obscuring genuine cohort structure. Because age exhibits multimodality and mild right skew, flexible smooths mitigate sensitivity to cohort gaps while preserving the monotone trend. Variance inflation checks ensure that including age along with spatial coordinates and accessibility–amenity measures does not induce problematic multicollinearity; regularization (e.g., ElasticNet) or dimensionality reduction for spatial terms can stabilize estimates if needed.

Statistical inference centers on the sign and shape of the age effect. In the linear baseline, a negative coefficient implies a constant percentage discount per unit of age on the log scale. In the smooth specification, significance of the age smooth (via approximate F or Wald tests) supports nonlinearity; the derivative of the fitted smooth is inspected to verify nonpositive slope across the observed range. Concordant evidence from rank-based associations (negative Spearman correlation between age and log price, conditional on controls) strengthens the conclusion while remaining robust to non-normality.

Robustness analyses probe the stability of depreciation estimates across subsamples and specifications. Stratifying by transaction date assesses whether market phases alter the age gradient; stratifying by location bands or incorporating spatial–age interactions tests neighborhood-specific depreciation. Influence diagnostics identify whether very old or very new cohorts disproportionately affect the slope; if so, re-estimation with robust loss functions or trimmed extremes verifies that the monotonic decline is not an artifact of a few leverage points.

Interpretation on the log scale facilitates communication of economically meaningful effects. A linear age coefficient approximates the percentage change in unit price per unit of age, while a smooth effect maps age to a varying percentage discount that can capture diminishing marginal depreciation at older ages or plateauing effects among very new properties. When interactions are present, marginal effects are reported for representative accessibility and amenity profiles to quantify how proximity to MRT or high retail density mitigates or amplifies depreciation. This set of tests and controls provides a rigorous basis for concluding whether, and how, unit prices decline with age in a nonlinear, context-dependent manner.
Spatial heterogeneity
This chapter evaluates whether unit-area price exhibits systematic spatial variation over latitude and longitude after controlling for transaction timing, building age, transit accessibility, and local amenities. Descriptive evidence indicates clustered prices and coordinate-dependent structure; the hypothesis is that a location premium persists once X1–X4 are held constant, reflecting neighborhood effects and agglomeration forces not fully captured by proximity and amenity counts alone. Conceptually, spatial heterogeneity arises from bundled, often unmeasured attributes—school quality, streetscape, environmental conditions, view corridors—that co-vary with coordinates and shape willingness to pay beyond the measured accessibility and amenity proxies.

A hierarchical testing framework operationalizes this hypothesis using nested hedonic specifications on the log-transformed target. Begin with a baseline model including X1–X4, then add latitude and longitude in progressively flexible forms: linear terms, nonlinear univariate smooths for each axis, and a bivariate spatial surface via tensor-product or thin-plate splines. Compare nested models using likelihood-ratio tests, partial R², and information criteria to quantify incremental explanatory power attributable to spatial terms. Examine partial dependence and contour maps from the smooth to verify coherent spatial gradients. If regularized estimators are used, track out-of-sample improvements to ensure the location component generalizes beyond the training neighborhoods.

Because spatial coordinates co-vary strongly with accessibility and amenities, multicollinearity and confounding must be managed to ensure interpretable partial effects. Diagnostics include variance inflation factors for X5–X6, pairwise and partial correlations among X3–X6, and sensitivity to coordinate re-encoding (centering, scaling, rotations, or district fixed effects). Practical controls involve regularization (ridge or elastic net), dimension reduction (e.g., principal components of coordinates), or discrete neighborhood indicators to absorb localized fixed effects. Interactions such as X2×location allow depreciation to vary across neighborhoods, acknowledging that age discounts can be attenuated where accessibility and amenities are high.

Residual diagnostics are essential to confirm that the included coordinate terms adequately capture spatial structure. Compute global and local spatial autocorrelation statistics on residuals (e.g., Moran’s I with distance or k-nearest-neighbor weights, and local indicators of spatial association) to detect remaining dependence. Significant autocorrelation suggests the need for richer spatial terms or spatial error processes; options include spatially explicit models (SAR/CAR), Gaussian process or kernel-based smoothers, and geographically weighted frameworks for exploratory robustness. Mapping residuals over coordinates and along urban corridors helps identify systematic omission (industrial edges, waterfronts, hillside areas) versus idiosyncratic property effects.

Validation should reflect the clustered sampling typical of urban markets. Use spatially aware cross-validation—holding out neighborhoods or coordinate blocks—to guard against optimistic generalization driven by spatial proximity, and combine this with the time-aware split to separate market-cycle dynamics from spatial effects. Robustness checks include alternative location encodings (distance to CBD or transit corridors), re-estimation under winsorized tails or robust loss functions to mitigate fringe leverage, and stability tests for the spatial component across transaction periods. Sensitivity to adding or removing X3–X4 verifies that the coordinate surface is capturing neighborhood fixed effects rather than merely re-expressing accessibility and amenity signals.

If the spatial terms remain statistically and practically relevant after controls, the implication is that a location premium exists beyond measured proximity and amenities. The coordinate surface then serves as a parsimonious proxy for bundled neighborhood quality, improving valuation accuracy and reducing omitted-variable bias. For decision-making, include the spatial component in production models, report its effect qualitatively as a gradient rather than isolated coefficients, and monitor residual hotspots to prioritize data enhancement (e.g., additional neighborhood covariates) and targeted interventions. This approach delivers rigor in testing spatial heterogeneity and aligns inference with the urban mechanisms that govern price formation across the study area.
Short-run time trend
This section examines whether the unit-area price in log space exhibits a short-run temporal pattern over the observed window. Transaction timing is unevenly distributed, with a concentration of records toward later dates, which elevates the risk of attributing aggregate market movements to cross-sectional features if time is not explicitly controlled. Descriptively, the within-window trajectory of binned median prices shows a local softness in earlier periods, a rebound around the standardized reference date, and a mild easing thereafter, indicating a non-monotonic short-run profile rather than a simple linear drift. On the marginal association level, price displays a positive relationship with transaction date, consistent with a modest upward phase within the sample period and the stabilizing effect of the log1p transform on dispersion.

To formally test the short-run trend, a sequence of complementary procedures is appropriate. First, a rank-based Spearman correlation between transaction date and log-transformed price provides a robust monotonicity check insensitive to outliers and mild nonlinearities. Second, parametric regressions of log1p price on a continuous time index, augmented by spline terms or piecewise linear segments with a knot at the reference date, evaluate both global trend and local changes in slope. Statistical significance of time coefficients and knots can be assessed using Wald or likelihood-ratio tests, while structural-break diagnostics (e.g., Chow-type or sup-Wald tests) probe whether the level or slope shifts around the observed turning point. Because the log1p scale yields percent interpretations, estimated time slopes translate directly into short-run percentage changes in unit-area price.

Isolating temporal effects requires adjustment for compositional shifts. The transaction date is negatively associated with house age, and time plausibly co-varies with accessibility and amenities due to ongoing network or retail evolution; these channels can induce spurious trend signals if untreated. Hedonic specifications that include house age, MRT distance, convenience-store density, and spatial coordinates as controls allow estimation of a composition-adjusted time effect. Alternatively, fixed effects by coarse time bins (e.g., months) capture discrete shifts while absorbing unobserved temporal shocks. Partial correlations or regressions with time and the covariate set clarify whether the observed short-run pattern reflects genuine market dynamics or changes in the mix of properties transacted.

Given the nonlinearity evident in the median profile, flexible functional forms are preferable to purely linear time terms. Penalized or cubic splines can accommodate a trough–rebound–ease pattern without overfitting, while regularization mitigates variance inflation from collinearity between time and location features. Model diagnostics should include checks for temporal autocorrelation in residuals, stability of coefficients across early versus late subsamples, and sensitivity to bin size when using time aggregates. A rolling-origin validation design aligns inference with operational forecasting and reduces the risk of temporal leakage.

From a business interpretation perspective, a positive short-run association between date and log price translates into higher unit-area values for otherwise similar properties transacted later in the window, consistent with market strengthening. The localized peak around the reference date and subsequent mild easing suggests phase dynamics rather than a monotone appreciation, underscoring the need for time-adjusted benchmarks when comparing properties across periods. Implementing a hedonic price index or a rolling median series, anchored to a baseline and corrected for structural and locational composition, provides an interpretable measure of short-run market movement suitable for valuation, risk management, and policy evaluation.
Feature Engineering
This chapter adopts a mechanism-first approach to feature engineering. Each transformation and constructed term is aligned with an economic or spatial mechanism known to drive urban housing prices: market timing, physical depreciation, transit accessibility, local amenity density, and spatial heterogeneity. The objectives are fourfold: stabilize variance and limit leverage from extremes; encode theoretically plausible monotonic relationships; capture nonlinearity and interactions implied by the mechanisms; and reduce modeling risk from mixed types and multicollinearity while preserving interpretability.

Time mechanism and trend control are captured through a continuous transformation of the transaction date. Dates are mapped to a months-since-start index with interquartile-range (IQR) clipping to guard against leverage from sparse early or late bins, followed by standardization. This yields a stable temporal regressor that reflects market-wide conditions and mitigates the known late-period imbalance. In modeling, this standardized trend participates as a smooth or linear driver, allowing temporal effects to be separated from cross-sectional attributes without resorting to high-cardinality dummies.

Physical depreciation is encoded via a robust treatment of house age. Negative values are coerced to missing (invalid ages), median imputation preserves location-scale properties under skew, and a non-negative IQR clip eliminates implausible extremes without distorting the central mass. Robust scaling is then applied to reduce the influence of the longer upper tail. To capture curvature in depreciation, a squared term of age is included in the linear-regularized specification, recognizing that price discounts per additional year can be nonlinear and may attenuate at very high ages.

Transit accessibility is engineered through a log1p transform of the distance to the nearest MRT station, with IQR clipping performed in log space and median imputation for missing values, followed by robust scaling. This produces a feature consistent with diminishing marginal penalties at very short distances and reduces the impact of extreme peripheral observations. For the linear-regularized model, a squared distance term complements the log transformation used in preprocessing, giving the specification the capacity to approximate both convex and concave responses depending on the data. The design reflects the monotonic negative relationship expected between distance and price and stabilizes estimation where distance is highly skewed.

Amenity density, proxied by the number of convenience stores, is treated to reflect its discrete, non-negative nature. Median imputation supplies a robust central tendency, a non-negative upper IQR clip contains the long right tail typical of dense commercial corridors, and rounding preserves the integer semantics before standardization. This workflow produces an interpretable, scaled amenity signal suitable for both linear and nonlinear models. Because returns to additional amenities can diminish at high densities, flexible forms are reserved for models capable of capturing curvature, and interaction with transit distance is considered to quantify the joint premium of transit-plus-amenity environments.

Spatial heterogeneity is addressed through coordinate standardization and interaction terms. Standardized latitude and longitude provide orthogonalized axes for spatial gradients. A simple bilinear interaction (latitude × longitude) offers the linear-regularized model a low-dimensional proxy for diagonal spatial structure. For models designed for smooth effects, a two-dimensional spline over latitude–longitude is used to learn an interpretable price surface that captures neighborhood clusters and gradients without overfitting. This mitigates multicollinearity among location and amenity variables and directly models the spatial premium mechanism implied by urban structure.

Mixed-type robustness is ensured by detecting columns with heterogeneous types and applying ordinal encoding where needed. This prevents type-induced failures during fitting and enforces a consistent numeric interface for downstream estimators, while leaving core numeric variables on their domain-appropriate scales.

Target-space considerations are integral to the engineering strategy. The outcome is modeled in log space using a log1p transform to reduce skewness and heteroscedasticity and to enable percentage-based interpretation of effects. For price-level evaluation and deployment, a smearing correction is applied to back-transform predictions, reducing bias when residuals are approximately log-normal. This closes the loop between variance-stabilized estimation and business-facing metrics on the natural price scale.

Monotonicity and interpretability constraints are explicitly used where model classes permit. Gradient boosted trees are constrained to be decreasing in distance to MRT and increasing in convenience store count, embedding domain-consistent behavior and improving stability under limited samples or covariate shift. Spline-based generalized additive specifications impose smoothness rather than strict linearity, providing transparent partial effect curves for age, distance, amenities, and time, alongside a tensor-product spatial smoother that yields an interpretable location effect.

Interaction design follows the mechanisms suggested by exploratory analysis and domain logic. Explicit polynomial and spatial interaction terms are included in the linear-regularized specification to approximate curvature and spatial cross-effects parsimoniously. Nonlinear and tree-based models capture higher-order interactions implicitly, especially between transit accessibility and amenity density and between structural age and location. This layered approach balances identifiability and flexibility across model families, ensuring that key mechanism-driven interactions are represented without over-parameterization.

Finally, risk controls are embedded in the feature pipeline. IQR-based clipping reduces leverage from rare extremes, robust scaling limits the impact of heavy tails, and integer-preserving rounding maintains measurement semantics. Temporal ordering is respected in model evaluation to prevent leakage, and regularization or constrained learning reduces variance inflation arising from correlated spatial and amenity features. Collectively, these engineering choices encode substantive mechanisms into features, equip models to capture nonlinearity and spatial structure, and support reliable, interpretable inference on the drivers of unit-area housing prices.
Time features from X1
Transaction time provides essential market context for valuation and must be represented with features that capture both calendar structure and continuous trend. The dataset exhibits uneven coverage with more observations in later periods, implying potential confounding between time and cross-sectional attributes if not explicitly controlled. Accordingly, time features are designed to (a) recover interpretable calendar components for communication, and (b) encode a robust, monotonic index that aligns with short-run market movement for modeling.

A continuous trend index is constructed as months since the earliest transaction date, rounded to the nearest month, winsorized using an interquartile-range rule to limit undue influence from sparse extremes, and then standardized. This index preserves ordering over time, absorbs gradual market shifts, and mitigates leverage from temporally isolated observations. It aligns with modeling strategies that require a smooth, monotonic driver: linear models use it as a standardized regressor; tree-based models can apply monotonic constraints consistent with an appreciating environment; spline-based models fit a flexible smooth to capture curvature suggested by short-run patterns. Using a standardized months-since-start index further supports fair comparison of cross-sectional features by decoupling within-period variation from the overall trend.

The calendar year is derived from the transaction date by parsing the integer year component. As the study horizon spans a short window, year indicators primarily capture discrete policy or market-level shifts rather than long-cycle structural changes. When included alongside the continuous trend index, year dummies act as level adjustments around the smooth trajectory. To avoid redundancy and instability in estimation, either retain only the trend index for compact horizons or use year indicators with careful regularization; their inclusion is most defensible when specific institutional events align with calendar boundaries and require explicit modeling as intercept shifts.

Month-of-year is obtained from the fractional part of the date mapped to integer months on a 1–12 scale. Encoding is best handled with cyclic representations (sine and cosine of the month angle) to reflect seasonality without imposing artificial discontinuities between December and January. In short horizons, monthly effects serve as mild seasonal controls and help capture within-year demand timing (e.g., school-year cycles or fiscal deadlines). When counts per month are limited or imbalanced, prefer cyclic encodings over full one-hot dummies to reduce variance and maintain a parsimonious specification; if seasonality is weak relative to trend, the monthly component can be omitted without material loss of fidelity.

Implementation follows robust preprocessing principles: parse mixed formats to numeric dates; compute months since start in the training portion only to prevent temporal leakage; apply IQR-based winsorization within each training fold; and standardize the resulting index for compatibility across models. For interpretability, retain a mapping from standardized values back to calendar dates so estimated effects can be communicated in calendar units. Document the derivation so downstream consumers understand how time enters both as an index and as calendar components.

In modeling and interpretation, time features are expected to show a positive association with log-transformed unit prices during an appreciating phase, with potential local curvature over the study window. The trend index should be included as a default predictor across specifications; month-of-year can be added to capture seasonality if sample balance permits; year indicators can represent discrete shifts where justified. Interactions between time and structural or locational attributes are plausible—later transactions often involve newer properties, and accessibility or amenity expansions can alter premiums—yet the base time features should first stabilize the temporal dimension before introducing interaction terms. This design improves attribution of price drivers, reduces omitted-variable bias, and supports consistent, time-aware valuation within the dataset’s short-run scope.
Spatial features from X5,X6
Spatial location encoded by latitude (X5) and longitude (X6) exhibits clear clustering and systematic price gradients across the study area. The densest concentration of transactions lies within a central coordinate band, with sparser coverage toward geographic fringes, and unit-area prices are higher within this central cluster and lower toward peripheral coordinates. Because accessibility (X3) and amenity density (X4) co-vary with spatial coordinates, price formation reflects joint spatial–accessibility–amenity mechanisms rather than isolated coordinate effects. These patterns motivate explicit spatial feature design to capture continuous location premiums and to reduce omitted-location bias when estimating the effects of age, accessibility, and time.

Prior to feature construction, coordinate conditioning should ensure robustness and interpretability. Mean-centering and scaling of latitude and longitude place both axes on comparable numeric ranges, facilitating regularization and smoothing. Extreme coordinates at the geographic margins warrant verification for geocoding consistency and, if valid, careful treatment to mitigate leverage. Because X5 and X6 can be strongly correlated within a compact urban footprint, transformations that reduce collinearity—such as orthogonal rotations, principal axes, or composite spatial indices—help stabilize estimation. Boundary-aware design is important: features should minimize extrapolation beyond the observed coordinate envelope, and predictions far from the central band should carry appropriately wider uncertainty.

Cluster-based encodings convert spatial heterogeneity into discrete neighborhood indicators. Grid schemes (e.g., geohash or equal-area tiles), administrative districts, or density-based clustering can assign each property to a spatial cell or zone; additional features may include local transaction density or within-cell summary statistics. These features capture sharp location discontinuities where district effects dominate but can oversimplify continuous gradients. To avoid overfitting to clustered sampling, cluster design should be conservative (coarser grids, regularization on many indicators) and validated with spatially aware splits that reduce optimistic error from neighborhood homogeneity. When used, zone indicators should be combined with continuous location features to preserve within-zone variation.

Two-dimensional smoothers over latitude–longitude provide a continuous representation of spatial price structure and are suitable for compact urban markets with gradual gradients and localized peaks. A tensor-product spline built from univariate bases on latitude and longitude generates a flexible surface that accommodates anisotropy (different smoothness along north–south and east–west axes) and captures micro-market effects without imposing arbitrary boundaries. Practical specification involves selecting basis size (knots per axis) and regularization strength to balance fidelity and smoothness; penalization controls oscillation and prevents overfitting to clustered areas. This approach aligns with the empirical evidence of spatial gradients and clustering and, in the comparative modeling results, contributed to strong generalization when paired with univariate smoothers for other predictors. The resulting surface is interpretable via partial effects: holding other variables constant, the lat–lon effect isolates neighborhood-level premiums and discounts attributable to spatial position.

Interactions between spatial coordinates and accessibility or amenities enhance mechanistic fidelity. Because MRT proximity and retail density are spatially organized, introducing interaction terms (or allowing the 2D smoother to operate jointly with X3 and X4) captures corridor effects and central-area synergies. For example, the premium associated with short MRT distance can vary across longitude bands if transit lines align with particular corridors; similarly, amenity effects can be amplified where the spatial surface indicates central agglomeration. Temporal interactions with transaction date (X1) can reveal evolving spatial premiums as infrastructure or commercial ecosystems change, and age (X2) may exhibit location-dependent depreciation profiles (older stock in amenity-rich cores versus older stock in peripheral areas). These designs should be accompanied by multicollinearity diagnostics to ensure that coordinate-based smooths and accessibility/amenity predictors remain identifiable.

Rigorous diagnostics and validation underpin reliable spatial feature use. Residual spatial autocorrelation checks assess whether the lat–lon surface and interactions have adequately captured location effects; persistent autocorrelation suggests the need for richer spatial terms or finer resolution. Variance inflation assessments help manage redundancy among X5, X6, X3, and X4. Boundary sensitivity and extrapolation risk are addressed by inspecting partial dependence near coordinate extremes and by constraining smoothers to reasonable flexibility. Spatially stratified or rolling-origin validation reduces leakage from neighborhood clusters and aligns evaluation with the observed sampling structure. Regularization choices can be guided by criteria such as generalized cross-validation or restricted maximum likelihood to balance smoothness and fit.

A practical engineering workflow is as follows: condition latitude and longitude through centering and scaling; verify and robustly handle fringe coordinates; introduce a two-dimensional tensor-product spline over lat–lon to model continuous spatial effects; optionally add coarse cluster indicators to capture district-level discontinuities; and include interactions with MRT distance, convenience-store density, and time to reflect spatially varying accessibility, amenity, and market dynamics. Throughout, apply regularization and spatially aware validation to control overfitting and ensure generalizable location-aware price inference. This design captures the observed clustering and gradients while maintaining interpretability and integration with the broader feature set.
Transforms
This section formalizes the transformation strategy applied to stabilize distributions, respect domain mechanisms, and enhance model interpretability and robustness. Design choices are driven by the observed skewness and cohort structure of core variables, and by the need for monotonic, well-conditioned effects in downstream models. Concretely, three complementary elements are adopted: a log1p transform for the distance-to-MRT variable to handle right tails and zero values; flexible spline bases for house age to capture nonlinear depreciation; and a log-space target to reduce heteroscedasticity and enable proportional interpretation. These transformations are integrated with imputation and IQR-based clipping to mitigate the influence of extreme points before scaling, providing a durable preprocessing pipeline for time-aware modeling.

For accessibility, the distance to the nearest MRT station is transformed using log1p after coercing negatives to missing, median-imputing, and applying IQR clipping in the log domain. The log1p form is appropriate for non-negative, right-skewed measures: it compresses large distances, preserves order, and is defined at zero, while establishing a concave penalty that reflects diminishing marginal disutility as properties become very distant. Post-transform robust scaling reduces sensitivity to residual tails and aligns magnitudes across features. This choice improves numerical conditioning and supports monotonic specification in tree-based models, while preserving interpretability of a decreasing relationship between accessibility and price. It also reduces leverage from fringe observations and helps stabilize variance across the distance spectrum, a pattern corroborated by the wider price dispersion near small distances and tighter bands at large distances seen in exploratory views.

For structural quality and depreciation, house age is encoded through smooth spline bases rather than a single linear term. The observed multimodality and right-skew across age cohorts imply heterogeneous gradients that linear specifications would mischaracterize. Univariate cubic splines with a moderate number of knots allow the marginal effect of age to vary across the range—steeper in mid-age segments, flatter at very high ages, and potentially exhibiting cohort-specific curvature—without presupposing a parametric form. Regularization via ridge penalization controls smoothness and limits overfitting, and knot counts and penalties are selected by validation to balance fidelity and generalization. Upstream preprocessing treats negatives as missing, imputes robustly, clips to a non-negative IQR envelope, and applies robust scaling, ensuring the spline basis operates on a cleaned, well-scaled input and delivers interpretable, stable smooths.

For the outcome variable, price per unit area is modeled in log space. Monetary responses are typically right-tailed and heteroscedastic; the log1p transform reduces skewness, compresses extremes, and yields residuals that better meet the assumptions of additive models. Inference remains economically interpretable because additive differences on the log scale correspond to proportional changes in price. To report price-level metrics and predictions without bias, a smearing correction is applied when back-transforming from log to the original scale. This approach aligns model training with robust error behavior while enabling stakeholders to consume results in familiar currency units.

The combined transform-then-scale pipeline—log1p for distance, spline bases for age, and log-space for the target—has practical modeling implications. It strengthens identifiability under collinearity between spatial and accessibility variables, improves numerical stability for penalized linear and GAM-type models, and harmonizes directional constraints with learned shapes. The concavity in the distance penalty captures diminishing returns to proximity; the age splines encode nonlinear depreciation consistent with cohort heterogeneity; and the target transform stabilizes variance to support reliable generalization. These choices also facilitate downstream interaction modeling by providing well-behaved marginal effects that can be composed with amenity and spatial terms, while diagnostic steps (IQR clipping, robust scaling, smearing back-transform) maintain consistency from preprocessing to evaluation.

Operationally, these transformations should be serialized alongside the model to ensure parity at deployment. Communication of effects should leverage the proportional meaning of log-space estimates, paired with back-transformed summaries for business audiences. Future refinements can include monotonic constraints for age where warranted, knot and penalty selection via information criteria, and sensitivity checks on the IQR clipping thresholds to balance robustness against potential signal loss at extremes.
Interactions
Interaction rationale and selection
Exploratory visualizations and correlation diagnostics indicate that price formation is not purely additive in core drivers. Two interaction families are especially pertinent: the joint effect of transit accessibility and retail amenities (X3 distance to MRT × X4 convenience stores) and the spatially varying depreciation pattern of house age (X2) across location (X5 latitude, X6 longitude). The first reflects complementarity between mobility and daily-life convenience; the second captures heterogeneity in how age discounts are capitalized across neighborhoods. Modeling these interactions helps separate bundled location effects from pure structural attributes, reduce omitted-variable bias, and improve interpretability on the log-price scale.

Transit–amenity interaction (X3 × X4): empirical signature
Bivariate views of Y versus X3 colored by X4 and gridded heatmaps over the X3–X4 plane show coherent gradients: prices are higher where MRT proximity is better and amenity density is richer, and lower where properties are both transit-distant and amenity-scarce. The gradient is not well approximated by parallel shifts, indicating non-additivity: amenity increments are more valuable at shorter distances, and the distance penalty is steeper in low-amenity contexts. Variability in Y is also larger near very short distances, consistent with heterogeneous micro-locations and amenity bundles. At the dataset level, X3 and X4 co-vary with spatial coordinates; their mutual association can be positive in some neighborhoods and negative in others, which reinforces the need to control for space and to model the interaction explicitly rather than rely on marginal effects alone.

Transit–amenity interaction (X3 × X4): specification
- Linear and generalized linear models: include an explicit product term X3·X4 alongside main effects. Because features are standardized/log-transformed, mean-centering X3 and X4 before interaction improves interpretability of main effects as marginal impacts at typical conditions and reduces multicollinearity.
- Generalized additive models: replace the product with a smooth bivariate term te(X3, X4), allowing flexible curvature and diminishing returns while preserving monotonicity expectations via smoothing penalties. Retain the latitude–longitude tensor to partial out spatial confounding.
- Gradient boosting with monotonic constraints: trees learn high-order interactions implicitly; keep monotonicity on X3 (decreasing) and X4 (increasing) to ensure plausible shapes. Use partial dependence, ICE/ALE surfaces, or SHAP interaction values to verify the learned X3×X4 synergy.
- Practicalities: construct interactions on the transformed scales used in preprocessing (e.g., log1p for X3, standardized X4). Clip extreme combinations to training bounds to avoid extrapolation in inference pipelines.

Transit–amenity interaction (X3 × X4): diagnostics and validation
- Fit comparison: juxtapose additive and interaction-enabled specifications via time-aware validation; prefer information criteria or cross-validated error to judge necessity of the interaction.
- Effect surfaces: inspect 2D partial dependence or ALE to confirm complementarity and to probe diminishing returns at very short MRT distances or very high store densities.
- Stability checks: stratify by spatial clusters and by time bands to ensure the interaction surface is robust across neighborhoods and market phases.
- Multicollinearity control: because X3, X4, and coordinates co-vary, compute variance inflation factors under the augmented specification; if inflation is high, consider regularization or spatial fixed effects.

Age–location interaction (X2 × X5, X6): empirical motivation
House age shows a clear negative association with log price, yet the strength of this depreciation is location-dependent. Spatial maps of Y reveal central clusters of higher prices and peripheral zones with lower prices; older stock in amenity-rich, transit-accessible cores can command relatively smaller discounts than equally old properties in peripheral, low-accessibility areas. This implies that the age gradient varies over geographic space, motivating an interaction between X2 and coordinates and, potentially, between X2 and accessibility/amenity variables.

Age–location interaction (X2 × X5, X6): specification
- Linear and generalized linear models: include X2·X5 and X2·X6 terms, optionally with polynomial age terms (e.g., X2 and X2^2) to allow curvature. Mean-center coordinates and age to stabilize estimates and clarify interpretations at the spatial centroid and typical age.
- Spatially varying coefficient GAM: allow the age effect to vary smoothly over space through a varying-coefficient structure, e.g., s(age) + f(lat, lon) + age × f(lat, lon). This captures neighborhoods where depreciation attenuates (central, amenity-rich) versus amplifies (peripheral).
- Tree-based models: interactions between age and space emerge naturally; use SHAP interaction analysis or localized partial dependence across spatial clusters to summarize patterns.
- Extensions: if accessibility is a key mechanism, consider X2×X3 and X2×X4 as targeted moderators to separate pure spatial heterogeneity from accessibility- or amenity-mediated age effects.

Age–location interaction (X2 × X5, X6): diagnostics and validation
- Nested testing: compare additive and interaction-enabled models; in GAMs, inspect smooth significance for the varying age surface; in linear models, test joint significance of X2·X5 and X2·X6.
- Spatial residuals: map residuals from the additive age model; systematic spatial patterns that vanish after adding interactions signal successful correction of location-dependent depreciation.
- Robustness: check stability across time splits to ensure the age–location interaction is not a byproduct of temporal composition shifts.

Confounding controls and estimation discipline
Interactions involving X3, X4, X5, and X6 are susceptible to confounding due to spatial clustering and time imbalance. To mitigate:
- Always include X1 transaction date to absorb market-level shifts that could masquerade as interaction effects.
- Retain a 2D latitude–longitude term to capture baseline spatial gradients before attributing residual variation to X3×X4 or X2×location.
- Use regularization for linear models and smoothing penalties for GAMs to prevent overfitting high-degree interactions.
- Evaluate feature parity across models: incorporate analogous interaction representations (explicit products for ElasticNet, bivariate smooths for GAM, and reliance on learned splits for GBT) to ensure comparability of learned mechanisms.

Interpretation on the log-price scale
Under the log1p target, interaction coefficients and smooth surfaces translate into multiplicative effects on the original price scale. For example, a stronger negative slope of X3 at low X4 indicates a larger percentage distance penalty in amenity-poor areas; a weaker age slope in central locations implies smaller percentage discounts for older properties in premium neighborhoods. Derivative-based summaries along selected slices of X3–X4 and localized age effects over space can be reported as elasticities or semi-elasticities for communication.

Operational and policy implications
- Transit–amenity synergy: amenity investments yield the largest price uplift where MRT access is already strong; conversely, retail additions in transit-distant areas have limited effect without mobility improvements.
- Location-dependent depreciation: renovation of older stock is more value-accretive in central, amenity-rich, and transit-proximate neighborhoods; peripheral older properties require deeper discounts or infrastructural upgrades to narrow the valuation gap.
- Scenario analysis: interaction-aware models enable what-if assessments, such as the incremental impact of adding amenities near stations or evaluating redevelopment benefits across neighborhoods with different age profiles.

Implementation in the pipeline
To operationalize, compute interaction features during preprocessing with the same scaling as main effects, serialize them with the model, and guard against extrapolation using training-range clipping. For GAMs, persist knot locations and basis transformers; for trees, retain monotonic constraint settings. In monitoring, track joint drift in X3–X4 and the spatial mix of X2 with coordinates to detect shifts that could alter learned interaction surfaces.
Modeling Design
This chapter defines the predictive target, the time-aware data partitioning scheme, and the complementary set of models employed to capture linear, nonlinear, spatial, and constrained monotonic effects in housing prices. The design prioritizes temporal validity, interpretability, and robustness, while keeping the evaluation protocol aligned with the transformed target used for training.

The predictive target is the unit-area house price. Given the right-skewed distribution typical of price variables and the heteroskedastic residual structure observed in raw scales, modeling is conducted in log-space using a log1p transformation. This stabilizes variance, mitigates the influence of extreme values, and makes additive error assumptions more tenable for linear and tree-based learners. For reporting and downstream use, predictions are mapped back to the original price scale using both a naive inverse (expm1) and a smearing correction derived from training residuals to reduce retransformation bias. Model comparison is anchored in log-space metrics, with price-scale metrics provided as complementary indicators of practical error magnitudes.

To mimic real-world forecasting and avoid temporal leakage, a chronological split is used based on transaction_date: approximately 70% of the earliest observations for training, 15% for validation, and 15% for final testing. Hyperparameters are selected using time-aware procedures that respect the temporal order: within-training rolling splits for the linear model, and validation-based early stopping for gradient boosting. Final models are refit on the combined training and validation data before test evaluation. This structure provides a clear separation between model selection and performance confirmation on unseen, later-period data.

Features include the cleaned and transformed predictors transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, and longitude. To better represent nonlinearities and spatial structure across model families, role-specific augmentations are used. The linear model receives low-order polynomial and interaction terms to capture curvature and basic spatial interactions. The gradient-boosted model leverages monotonic constraints grounded in domain knowledge to enforce directional plausibility where appropriate. The generalized additive model uses spline bases for smooth univariate effects and a tensor-product spline for latitude–longitude to capture spatial gradients without overfitting discrete interactions.

The ElasticNet is selected as the regularized linear baseline to balance bias and variance under correlated predictors. Its feature set augments the core predictors with age_sq, distance_sq, and a latitude–longitude interaction to approximate curvature and coarse spatial variation. Standardization is embedded in a pipeline, and the regularization strength and sparsity trade-off (alpha, l1_ratio) are tuned over a compact grid using time-series cross-validation restricted to the training window. This design yields a transparent coefficient structure while allowing limited nonlinearity through engineered terms.

The monotonic gradient-boosted tree model targets flexible nonlinear fits while encoding known directional effects. Monotone constraints are specified to enforce that price decreases with increasing distance_to_mrt and increases with convenience_stores, with other features left unconstrained. A small hyperparameter grid explores learning rate, tree depth and leaves (or child weight), subsampling of rows and features, and L2 regularization, with early stopping on the validation split to control complexity. The implementation prefers LightGBM for efficiency and native monotonic support, with fallbacks to XGBoost or a scikit-learn gradient boosting variant to ensure portability. This model family also supports post hoc interpretability via feature importance and contribution diagnostics when available.

The generalized additive model is implemented via spline basis expansions estimated with ridge regularization. Cubic spline smoothers are applied to house_age, distance_to_mrt, convenience_stores, and transaction_date, and a tensor-product spline over latitude and longitude captures smoothly varying spatial effects. The number of knots for univariate and 2D components and the overall penalty (alpha) are selected from a small grid using validation performance. This approach emphasizes interpretability through smooth effect curves and aligns with hypothesized nonlinear and spatial mechanisms while remaining resilient to overfitting through regularization.

Evaluation is standardized across models. In log-space, root mean squared error and R² quantify fit against the transformed target consistent with training. On the original price scale, RMSE and MAE are reported using both naive and smearing-corrected back-transformations, with the smearing approach used as the primary price-level indicator due to reduced bias. Model selection focuses on minimizing log-space error to maintain coherence with the training objective, with price-scale metrics serving as decision-support context for practical accuracy.

The modeling workflow is engineered for inference and reproducibility. A preparation step ensures consistent column naming and computes any model-specific derived features required at prediction time. An inference interface accepts the requisite fields, applies the correct feature construction per model, outputs predictions in both log and price scales, and uses the model-specific smearing factor estimated from training residuals. The best-performing fitted model is serialized using a pickle+gzip format and stored as base64 for portability, with a size-aware artifact note emitted if the binary exceeds a predefined threshold. Random seeds are set where applicable to support deterministic training and comparable evaluations across runs.
Target and Split
The target for modeling is the house price of unit area. Consistent with the preprocessing stage, the target is represented in log space using the log1p transformation. This choice is driven by the empirical skewness of the raw price variable and the need to stabilize variance across the range of values. Modeling in log space reduces the influence of high-price extremes, improves the linearity of relationships with predictors, and yields effects that are naturally interpretable on a multiplicative scale. In linear settings, small changes in predictors can be read as approximate percentage changes in price; for nonparametric and tree-based learners, the log link similarly regularizes the learning problem and mitigates heteroskedasticity.

Operationally, models are trained against y_log = log1p(price). For communication on the original price scale, predictions are back-transformed. Because direct exponentiation introduces bias when residuals are nonzero, a smearing correction is applied: the factor is estimated from the training residuals in log space and used to adjust exponentiated predictions. This approach preserves interpretability for stakeholders who consume price-level metrics while retaining the statistical advantages of training in log space.

Model evaluation and selection adhere to a time-based split that respects the chronological structure of transactions. Records are sorted by transaction_date and partitioned into training, validation, and test sets in 70%, 15%, and 15% proportions, respectively. The training set contains the earliest observations, the validation set occupies the middle period for hyperparameter tuning, and the test set comprises the most recent segment reserved for final assessment. This design avoids temporal leakage by ensuring that information from future periods does not influence model fitting and tuning, and it better reflects prospective use where the model is applied to later data than it was trained on.

The combination of a log-space target and a chronological split addresses two common challenges in price modeling: distributional skew and nonstationarity over time. The log transform focuses learning on relative differences and reduces sensitivity to price extremes, while the time-aware partitioning provides a realistic estimate of generalization to later periods. Together, these choices support robust estimation and transparent reporting, with validation tuned on earlier segments and final conclusions drawn from the held-out, most recent test window.
Metrics
Model performance is evaluated in two complementary spaces. In the modeling space, the target is log-transformed to stabilize variance and temper right-skew; accordingly, primary goodness-of-fit metrics are the root mean squared error in log space and the coefficient of determination in log space. In the reporting space, predictions are back-transformed to the original price scale and assessed with root mean squared error and mean absolute error. This dual perspective balances statistical rigor during estimation with practical interpretability for stakeholders.

Log RMSE quantifies the average magnitude of prediction errors on the log-transformed target, emphasizing larger deviations through squaring and providing a scale-stable criterion that aligns with models trained under squared-loss objectives. Log R² measures the proportion of variance in the log-transformed target explained by the model, computed as one minus the ratio of residual sum of squares to total sum of squares in log space. Because R² depends on the variance structure of the response, and the log transformation changes that structure, R² is reported only in log space to avoid conflating transformation effects with price-level variability.

Back-transformation from log predictions to price requires careful bias correction. A naive approach that simply exponentiates and subtracts one from log predictions tends to underestimate expected prices when residuals are not symmetrically distributed in log space. To mitigate this, a smearing correction is applied: a multiplicative factor is estimated from training residuals by averaging the exponentiated log-space residuals, and this factor is used to adjust all back-transformed predictions on validation and test splits. Operationally, price predictions are computed as the exponential of the log predictions multiplied by the smearing factor, minus one to invert the earlier log-plus-one transform. This approach produces less biased point estimates on the original scale under log-normal error structures and maintains the no-leakage principle by estimating the factor solely from training data.

Price-level assessment focuses on RMSE and MAE computed from smearing-corrected predictions. RMSE in price space captures overall dispersion of errors and is sensitive to large deviations, making it informative for worst-case performance and for comparing models that may differ in tail behavior. MAE complements RMSE by summarizing typical absolute error magnitude and is more robust to outliers, providing a clearer signal of expected performance for the median case. Reporting both metrics on the original scale supports evaluation in units stakeholders recognize while preserving comparability across splits and models.

All metrics are reported consistently for train, validation, and test partitions in the time-based 70/15/15 split. Log-space metrics (RMSE and R²) reflect the optimization target and provide model-internal diagnostics across splits. Price-space metrics (RMSE and MAE) reflect end-user utility and are derived via smearing to control back-transform bias. The smearing factor is model-specific—estimated from each model’s training residuals—and applied uniformly to validation and test predictions to ensure fair comparisons. When communicating results, emphasis is placed on the validation and test metrics to gauge generalization; discrepancies between train and out-of-sample scores are examined to assess overfitting or instability.

Interpretation of magnitudes should account for transformation effects. A given log RMSE corresponds approximately to a multiplicative error on price for small residuals, which helps relate log-space fit to price-space expectations. Higher RMSE or lower R² in log space indicates poorer fit in the modeling domain; higher price RMSE or MAE indicates greater error in monetary terms. Because RMSE is more sensitive to outliers, simultaneous consideration of MAE helps discern whether performance differences are driven by a small number of extreme cases or by systematic shifts. This metric design, together with smearing-based back-transformation, provides a coherent framework for selecting, comparing, and deploying models while maintaining statistical validity and practical interpretability.
ElasticNet
ElasticNet is adopted as a transparent, regularized linear baseline for the log-transformed target. By combining L1 and L2 penalties, it mitigates multicollinearity and controls model complexity while retaining direct coefficient interpretability. Training in log space stabilizes variance and makes errors more comparable across price levels, aligning with the metric design defined for this study.

The feature set comprises six primary predictors augmented by three engineered terms to capture curvature and simple spatial interaction: transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, longitude, plus age_sq (house_age squared), distance_sq (distance_to_mrt squared), and lat_long (latitude × longitude). The polynomial terms allow for nonlinear depreciation and distance effects within a linear framework, and the latitude–longitude product provides a first-order proxy for spatial gradients without introducing a full spatial smoother. All predictors are standardized within the modeling pipeline to ensure penalties are applied on a comparable scale and to aid numerical convergence.

Hyperparameters are tuned using time-aware cross-validation. Specifically, a 5-fold TimeSeriesSplit is performed on the chronological training block to preserve temporal ordering and prevent leakage. A grid over alpha (overall regularization strength) spanning logspace from 1e-4 to 1e2 and l1_ratio values {0.1, 0.5, 0.9} is evaluated. For each fold, a pipeline with StandardScaler followed by ElasticNet (max_iter set high for convergence) is fit, and mean log-space RMSE across folds determines the preferred configuration. This strategy balances bias–variance while respecting the data’s temporal structure.

After selecting the best alpha and l1_ratio, the final ElasticNet pipeline is refit on the combined train and validation sets to maximize the use of pre-test information. Predictions are then generated for train, validation, and test partitions. Coefficients and intercept are retained alongside the feature order, enabling subsequent inspection of effect directions and magnitudes and facilitating consistent inference in deployment.

Because the model is estimated in log space, two price-scale back-transformations are produced to support evaluation and downstream use. The naive transform applies the inverse log1p, whereas the smearing-adjusted transform multiplies exp(predicted log) by a smearing factor computed from training residuals. The latter approximates E[Y|X] under log-normal error and typically reduces bias in price-level metrics. Both log-space (RMSE, R²) and price-space (RMSE, MAE via smearing) metrics are computed to align with the project’s reporting standards.

The design emphasizes robustness and reproducibility. Time-based splitting coupled with rolling-origin cross-validation during tuning reduces temporal leakage risk. Standardization occurs within each CV fold to avoid information bleed. While the specification admits only linear combinations of predefined features, the inclusion of curvature and a parsimonious spatial interaction helps bridge flexibility and interpretability; any residual nonlinearity or higher-order interactions beyond these constructs are intentionally deferred to more flexible models in subsequent sections.

Overall, the ElasticNet configuration serves as an interpretable, well-regularized benchmark: a standardized linear model in log space, equipped with targeted feature engineering and hyperparameters tuned via time-series cross-validation, yielding coefficients that can be directly related to domain expectations and providing a stable reference for comparing more complex approaches.
Monotonic GBT
This section specifies a gradient-boosted tree model with monotonicity constraints to encode core domain expectations while maintaining non-linear flexibility. The target is modeled in log-space, consistent with the overall modeling design, and price-level metrics are obtained by smearing back-transformation during evaluation. Two directional constraints are imposed: the response is constrained to decrease with distance to the nearest MRT station (X3), reflecting an accessibility premium, and to increase with the number of convenience stores (X4), reflecting an amenity premium. All other predictors remain unconstrained to allow the model to capture temporal and spatial heterogeneity.

The implementation prioritizes LightGBM with native monotone constraints. The feature set comprises transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, and longitude, and the constraint vector is aligned to this ordering as [0, 0, −1, 1, 0, 0], indicating no constraint for transaction_date and house_age, decreasing for distance_to_mrt, increasing for convenience_stores, and no constraint for latitude and longitude. If LightGBM is unavailable, an XGBoost configuration with the equivalent constraint specification is used; if neither library is available, a scikit-learn GradientBoostingRegressor serves as a fallback without monotonic guarantees.

Model capacity and regularization are tuned via a compact grid designed to balance bias and variance under monotone restrictions. For LightGBM, the search spans learning_rate in {0.05, 0.1}, max_depth in {3, 5} with num_leaves set accordingly, min_data_in_leaf in {20, 50}, feature_fraction in {0.8, 1.0}, bagging_fraction in {0.8, 1.0}, and L2 regularization λ in {0.0, 5.0}. Early stopping on a time-ordered validation set is applied with a generous upper bound on boosting rounds, and the best iteration is recorded to prevent overfitting. For the XGBoost alternative, the grid includes learning_rate in {0.05, 0.1}, max_depth in {3, 5}, min_child_weight in {1.0, 5.0}, colsample_bytree in {0.8, 1.0}, subsample in {0.8, 1.0}, and L2 regularization λ in {0.0, 5.0}, again with early stopping. The final model is refit on the combined training and validation splits using the best configuration and iteration count selected by validation Log RMSE.

Monotonic constraints act as shape regularizers: they reduce implausible local oscillations along constrained dimensions, improve extrapolation behavior near the support boundaries, and enhance model stability under covariate shift. In this application, constraining distance_to_mrt to be non-increasing ensures the model cannot assign higher prices to otherwise identical homes that are farther from transit, and constraining convenience_stores to be non-decreasing encodes a non-negative marginal value of nearby amenities. Leaving latitude and longitude unconstrained allows the ensemble to learn complex spatial surfaces. Because the target is in log-space, the learned effects can be interpreted as monotone relationships on the log price scale, which translates to multiplicative effects on the raw price scale after back-transformation.

Hyperparameter choices interact with monotone learning dynamics. Depth and the implied number of leaves govern the granularity of monotone step functions, while min_data_in_leaf and L2 regularization control smoothness and guard against overfitting within the feasible monotone set. Stochastic subsampling through feature_fraction and bagging_fraction adds variance reduction without violating constraints, since LightGBM and XGBoost enforce monotonicity tree-by-tree. Validation-based early stopping is especially important because monotone constraints can delay overfitting relative to unconstrained ensembles; monitoring Log RMSE on a time-aware validation split provides a robust stopping rule and yields the best iteration for refitting.

Model interpretation leverages both global and local tools. Feature importance by gain indicates that distance_to_mrt contributes the largest share of predictive power, followed by latitude, house_age, longitude, convenience_stores, and transaction_date, which aligns with the intended role of accessibility and spatial location. SHAP contribution values are computed on the test set to quantify local feature effects. Under monotone constraints, SHAP attributions along the constrained dimensions exhibit ordered behavior consistent with the imposed directionality, aiding auditability and communication.

Several practical considerations apply. Monotone constraints guarantee the direction of the partial dependence when other features are held fixed; they do not prohibit interactions or non-linearities involving unconstrained variables, which the ensemble continues to exploit. Mis-specified constraints can bias the model if the true relationship violates the assumed direction, so constraints are limited to strong, theory-backed effects. The spatial coordinates are intentionally left unconstrained to capture localized price gradients that may not be monotone in either axis. Finally, when library fallbacks are triggered, the scikit-learn alternative omits constraints; results from such runs should be interpreted with this difference in mind.

Overall, the monotonic GBT encapsulates key economic priors—proximity to transit is beneficial and amenities add value—while retaining the flexibility of boosted trees. The tuned configuration and early-stopped training deliver plausible response shapes and strong validation performance, and the model’s interpretability is enhanced by monotone guarantees and post hoc attribution analyses.
GAM Spline
This chapter specifies a generalized additive modeling approach in log-space that combines univariate spline smooths for key covariates with a two-dimensional spatial smooth over latitude and longitude. The additive structure provides a transparent mapping from predictors to the target via smooth effect functions, enabling direct interpretation of nonlinearity and spatial heterogeneity while maintaining a regularized, data-driven fit. The target is modeled as the natural logarithm of price, consistent with prior transformations in the workflow; predictions can be back-transformed to the price scale using a smearing correction in subsequent reporting.

Univariate smooths are defined for house_age, distance_to_mrt, convenience_stores, and transaction_date using cubic B-spline bases. The number of knots controls the flexibility of each smooth and was selected through validation to balance bias and variance. A ridge penalty on the spline coefficients serves as the smoothing parameter, shrinking overly complex shapes and mitigating overfitting. This formulation allows each predictor to contribute a continuous, potentially nonlinear effect, capturing common phenomena such as diminishing returns in amenities, nonlinear depreciation with age, or nonlinear time patterns within the observed horizon. As the spline bases are fit over the empirical ranges of the training data, extrapolation outside those bounds is naturally limited and should be interpreted cautiously.

Spatial structure is captured by a tensor-product spline over latitude and longitude, constructed as the Kronecker product of their respective one-dimensional bases. This two-dimensional smooth models broad spatial gradients and localized variations without imposing parametric forms such as polynomials, thereby accommodating complex, smoothly varying geography-driven price differences. The knot count in each axis was tuned to provide adequate resolution while controlling the effective degrees of freedom, avoiding overly wiggly surfaces that can arise in high-capacity spatial bases. The tensor-product representation is additive with respect to the univariate smooths, ensuring that spatial effects are modeled jointly with covariate-driven effects but without introducing unspecified interactions among non-spatial predictors.

Estimation proceeds by assembling a design matrix composed of the univariate spline basis blocks and the lat–lon tensor-product block, followed by ridge regression to obtain penalized least squares estimates. Hyperparameters for the spline complexity and ridge penalty are selected via validation root mean squared error under the time-based split, and the final model is refit on the combined training and validation data prior to evaluation on the test set. This procedure keeps model selection time-aware and avoids leakage from the test period into hyperparameter tuning.

Interpretability is provided through the extraction of smooth functions: for each univariate predictor, the fitted partial effect can be plotted across its observed range, and for latitude–longitude, the fitted surface can be visualized on a grid. These effects are ceteris paribus within the additive framework and can be used to validate expected directional relationships and nonlinear patterns. The model also exposes an intercept as the baseline level, with each smooth representing deviations around that baseline. In downstream inference, predictions are generated in log-space and converted to the price scale with a smearing factor derived from training residuals, allowing consistent reporting of price-level metrics.

In practice, this GAM spline design provides a balance between flexibility and control. While monotonicity is not enforced, the regularized smooths typically learn stable, domain-consistent shapes when informed by sufficient data. Model capacity is primarily governed by the knot counts and the ridge penalty; increasing knots raises flexibility, whereas stronger penalty suppresses wiggles. Extrapolation risk is managed by relying on spline bases fitted within training bounds and by interpreting edge behavior cautiously. If stronger structural assumptions are desired, extensions such as monotonic constraints or interaction smooths between non-spatial predictors can be incorporated, but the present specification focuses on univariate smooths and a spatial tensor to maintain clarity and robustness.
Modeling Results
The modeling evaluation was conducted on a dataset of 414 observations using a temporally ordered split with 70 percent for training, 15 percent for validation, and 15 percent for testing. All models were fit in log space to mitigate target skew, and performance was reported both in log metrics and in the original price scale via a smearing back-transformation to correct retransformation bias. This setup emphasizes temporal generalization and helps prevent leakage, making validation and test comparisons meaningful for short-run forecasting.

Across the three approaches—ElasticNet with engineered terms, gradient boosting trees with monotonic constraints, and a spline-based generalized additive model—the spline GAM achieved the strongest out-of-sample accuracy. On the test set, ElasticNet yielded a log RMSE of 0.2416 and log R² of 0.6406, with price RMSE 8.8125 and price MAE 6.0580. The LightGBM model with monotone constraints obtained a test log RMSE of 0.2396 and log R² of 0.6465, with price RMSE 8.5779 and price MAE 6.0567. The spline GAM attained a test log RMSE of 0.1944 and log R² of 0.7673, with price RMSE 7.7012 and price MAE 5.3651. Notably, validation performance favored the tree-based model in log RMSE, but generalization to the held-out test horizon was comparatively stronger for the GAM. Training times were modest for ElasticNet and the GAM, and higher for gradient boosting, reflecting the relative computational cost of tree ensembles.

The differential performance profiles are consistent with the modeling designs. ElasticNet, augmented with polynomial terms for age and distance and a latitude–longitude interaction, captures curvature and a coarse spatial pattern but remains fundamentally linear, limiting its ability to represent localized spatial heterogeneity and flexible nonlinearities. The monotone gradient boosting model encodes domain knowledge by constraining price to decrease with increasing distance to MRT and increase with convenience stores, which improves plausibility and guards against pathological fits; however, the ensemble’s high capacity can align closely to validation folds while still incurring a generalization gap on the final test horizon. The spline GAM combines univariate smooths for age, distance, convenience, and transaction date with a two-dimensional tensor product smooth over latitude–longitude, yielding a controlled nonlinearity and a coherent spatial surface. This balance between flexibility and regularization likely contributed to the superior test performance.

Model interpretations align with expected urban housing mechanisms. ElasticNet coefficients exhibited positive effects for transaction date, convenience stores, and geo-coordinates, and negative effects for house age and MRT distance, with squared terms refining curvature. In the gradient boosting model, feature importance by gain indicated distance to MRT as the dominant driver, followed by latitude, house age, longitude, convenience stores, and transaction date, and SHAP attributions were computed on the test set to illuminate local contributions. The GAM provides smooth effect curves and a spatial surface, enabling inspection of how price varies gradually with each predictor and across the city’s latitude–longitude plane, supporting transparent communication of effects without relying on piecewise splits.

Price-scale reporting incorporated smearing corrections derived from training residuals, with smearing factors near one (approximately 1.0204 for ElasticNet, 1.0135 for LightGBM, and 1.0148 for the GAM). These modest adjustments reduce bias introduced by exponentiating log predictions and yield more reliable RMSE and MAE figures in monetary units. The concordance between log-space improvements and price-level reductions supports the robustness of the log transformation and the consistency of the back-transformation procedure.

Generalization patterns indicate that the GAM maintained the most stable performance from validation to test, while ElasticNet and the constrained tree ensemble displayed larger gaps, suggesting sensitivity to short-run temporal shifts or localized spatial regimes. Given the time-aware split, these gaps are informative about non-stationarity over the 2012–2013 period and underscore the value of smooth, parsimonious function classes for volatile horizons. These findings also highlight the importance of monotonicity and smoothness constraints to mitigate overfitting while preserving credible directional effects.

Based on the test log RMSE selection criterion, the spline GAM was chosen as the best-performing model, with a selection score equal to its test log RMSE of 0.1944. The chosen model and its preprocessing were serialized as a pickle compressed with gzip and encoded to base64 to facilitate downstream deployment, and the inference interface applies the same smearing correction to return price-level estimates. Collectively, the results validate the accessibility and amenity effects, capture depreciation and spatial heterogeneity, and demonstrate that structured smooth models offer an effective trade-off between interpretability and predictive accuracy for this application.
ElasticNet results
The ElasticNet model was trained within a standardized pipeline that first z-scales all inputs and then fits a penalized linear model combining L1 and L2 regularization. Hyperparameters alpha and l1_ratio were selected via time-series cross-validation on the training segment and the final model was refit on the combined train+validation set before evaluation. The feature set comprised the base predictors (transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, longitude) and three engineered terms designed to capture curvature and basic spatial interaction (age_sq, distance_sq, lat_long). Training was efficient, with a measured training time on the order of a few tenths of a second.

On the validation split, ElasticNet achieved a Log RMSE of 0.1413 and a Log R² of 0.7901. In price space using smearing correction, the validation Price RMSE and MAE were 5.6003 and 4.3743, respectively. These results indicate that, under the time-consistent validation regime, the linear-regularized specification provided a stable and comparatively accurate fit, benefiting from both shrinkage and the inclusion of simple nonlinear terms.

On the held-out test split, the model obtained a Log RMSE of 0.2416 and a Log R² of 0.6406, with smearing-based Price RMSE and MAE of 8.8125 and 6.0580, respectively. The increase in error from validation to test suggests some degree of temporal distribution shift and/or limits to the linear specification’s ability to extrapolate over time. This pattern is consistent with time-ordered data where feature–target relationships may evolve and where more flexible models can sometimes generalize better across later periods.

Coefficient patterns were directionally consistent with domain expectations. The fitted signs were negative for distance_to_mrt and distance_sq, supporting the accessibility premium (closer to MRT corresponds to higher prices), and positive for convenience_stores, aligning with an amenity premium. House_age carried a negative linear coefficient, while age_sq was positive, indicating curvature in the age–price relationship rather than a purely linear depreciation; this configuration typically implies a diminishing marginal effect of age at higher values or a non-monotone shape, depending on the scale and range of age. Transaction_date had a positive sign, consistent with a short-run appreciation over the sample window. Latitude and longitude were positive, reflecting a spatial gradient captured in linear terms; the lat_long interaction was included to approximate spatial variation but, as a single interaction, remains a coarse representation of complex spatial effects. Because features were standardized prior to fitting, coefficient magnitudes are directly comparable in standardized units, but interpretation of relative importance should still account for residual collinearity among spatial variables.

All targets were modeled in log space and converted back to price space for reporting via the smearing estimator. For ElasticNet, the smearing factor was approximately 1.0204, indicating mild log-normal residual asymmetry and providing a small but meaningful correction to price-level predictions. The reported price-scale RMSE and MAE reflect this correction, which is preferable to a naive exponentiation when residuals are not strictly homoscedastic and symmetric in log space.

Overall, the ElasticNet delivered fast, interpretable results with plausible coefficient directions and competitive validation accuracy. Its test performance, while reasonable, lagged behind more flexible specifications, highlighting the trade-off between parsimony and the ability to accommodate nonlinearity and spatial heterogeneity beyond simple polynomial and interaction terms.
GBT results
The gradient-boosted trees model was trained with monotonicity constraints informed by domain knowledge: distance_to_mrt was constrained to have a non-increasing effect on the log price, and convenience_stores was constrained to have a non-decreasing effect; other predictors were left unconstrained. The model used six predictors (transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, longitude) and was optimized via a grid over learning rate, depth, sampling, and L2 regularization with early stopping on the validation set. This design targets nonlinearities while enforcing economically plausible directions for key effects.

On the validation split, the model achieved a log RMSE of 0.1139 and a log R² of 0.8636, indicative of a strong fit in log space. When back-transforming to the price scale with the smearing correction, the corresponding price RMSE and MAE were 4.3444 and 3.3756, respectively. These results demonstrate that the boosted trees captured substantial structure in the validation period with low residual error and high explanatory power.

On the held-out test split, performance degraded relative to validation, with a log RMSE of 0.2396 and a log R² of 0.6465. Price-scale errors with smearing were 8.5779 (RMSE) and 6.0567 (MAE). The increase in error and reduction in R² suggest a generalization gap, which is consistent with time-ordered splits where temporal regime shifts and evolving spatial composition can reduce out-of-period accuracy. The model’s smearing factor was approximately 1.0135, reflecting mild log-residual variance and enabling unbiased price-level error reporting.

Feature importance analysis based on gain indicated that distance_to_mrt was the most influential predictor, followed by latitude, house_age, longitude, convenience_stores, and transaction_date. This ordering is consistent with an accessibility-driven market where proximity to transit and spatial location dominate pricing, with structural attributes and local amenities contributing secondary effects. The enforced monotonic directions on distance_to_mrt and convenience_stores improved interpretability by aligning estimated effects with prior expectations. SHAP values were computed on the test set to inspect local contributions, providing case-level explanations that were consistent with the global importance and the imposed constraints.

Overall, the constrained GBT achieved strong validation performance and reasonable test accuracy, with importance patterns emphasizing transit accessibility and spatial coordinates. The observed validation–test gap highlights the need for time-aware validation and potentially additional spatiotemporal features to stabilize out-of-period performance.
GAM results
This section reports the performance and interpretability of the generalized additive model (GAM) implemented via penalized spline bases. The specification comprises univariate smoothers for house_age, distance_to_mrt, convenience_stores, and transaction_date, and a two-dimensional tensor-product spline over latitude–longitude to capture spatial structure. The target is modeled in log space, with predictions back-transformed to the price scale using a smearing correction to mitigate retransformation bias. Regularization strength and basis complexity were selected by validation, yielding n_knots_univariate=8 for the univariate terms and n_knots_2d=6 for the spatial tensor, with efficient training time.

On the validation split, the GAM achieved a log RMSE of 0.1214 and a log R² of 0.8452. When predictions were back-transformed using a smearing factor of approximately 1.0148, the price-level RMSE and MAE were 4.7290 and 3.7870, respectively. These results indicate a strong fit in log space and controlled error magnitudes on the price scale. The smearing adjustment is consistent with multiplicative residual behavior in log space and improves the unbiasedness of price-level estimates relative to a naive exponential back-transform.

On the held-out test split, the GAM delivered a log RMSE of 0.1944 and a log R² of 0.7673. Price-level error magnitudes were RMSE 7.7012 and MAE 5.3651 after smearing. The generalization gap between train and test (train log RMSE 0.1726 versus test 0.1944) is modest, indicating stable out-of-sample behavior under the time-based split. Compared with the alternative models, this GAM attained the lowest test log RMSE among the candidates, motivating its selection as the best-performing approach for this dataset.

The fitted smooth effects offer interpretable insights into the functional form of each predictor. The distance_to_mrt smoother captures an accessibility premium, typically manifesting as a decreasing effect with increasing distance, reflecting higher values near transit. The convenience_stores smoother is consistent with an amenity premium, with an increasing relationship and plausible diminishing returns as store counts rise. The house_age smoother accommodates nonlinearity in depreciation, allowing for faster price decline at certain age ranges and potential flattening where the marginal effect moderates. The transaction_date smoother reflects short-run temporal movements over the study horizon without imposing a strictly linear trend. The latitude–longitude tensor-product spline summarizes spatial heterogeneity by learning smoothly varying surface effects; this representation captures localized premiums and gradients while suppressing spurious high-frequency patterns through penalization.

Overall, the GAM balances accuracy and interpretability: it provides competitive error rates in both log and price spaces and yields transparent smooth functions aligned with domain hypotheses on accessibility, amenities, depreciation, spatial variation, and short-run time trends. The combination of penalized splines and a spatial tensor allows the model to capture structured nonlinearity and location effects while maintaining robustness under temporal validation.
Best model selection
Model selection followed a time-aware protocol: data were ordered by transaction date and split 70/15/15 into training, validation, and test segments. Each model’s hyperparameters were tuned on the validation split, and model performance was assessed primarily by Log RMSE in the target’s log-space, with supplementary price-level RMSE and MAE computed via a consistent smearing back-transformation. This ensures comparability across models and guards against distortions from the log-to-price mapping, as smearing factors were of similar magnitude across candidates.

Across the three candidates, the spline-based generalized additive model achieved the most favorable test performance. Specifically, GAM_SplineApprox attained a test Log RMSE of 0.1944 with a Log R² of 0.7673, outperforming both the monotonic gradient-boosted trees and the ElasticNet baselines, whose test Log RMSE values were 0.2396 and 0.2416, respectively. In price space, the GAM also yielded the lowest test RMSE and MAE via smearing. Although the monotonic GBT exhibited the strongest validation metrics among the candidates, its advantage did not carry through to the test split, indicating a comparatively larger generalization gap. By contrast, the GAM’s validation and test metrics were more aligned, suggesting greater stability under temporal generalization.

Beyond accuracy, the GAM presents methodological advantages that are well-suited to the domain. Its univariate spline smoothers capture nonlinear relationships for house age, distance to MRT, convenience stores, and transaction time, while the two-dimensional latitude–longitude spline isolates spatial heterogeneity without relying on hand-crafted spatial interactions. This structure directly operationalizes the hypothesized mechanisms—accessibility and amenity premiums, depreciation, and short-run trend—while preserving interpretability through smooth effect curves. Regularization via ridge penalization mitigates overfitting and yields smooth effects that are easier to validate and communicate than the stepwise responses typical of boosted trees.

Comparatively, the monotonic GBT embeds sensible directional constraints on distance to MRT and convenience stores, which enhances plausibility. However, its higher test error indicates less robust out-of-sample performance in this setting. The ElasticNet, while computationally efficient and interpretable in terms of linear coefficients, lacks the flexibility to represent the observed curvatures and spatial gradients, even with added polynomial and interaction terms, resulting in lower test accuracy. Given that smearing factors are close across models, differences in price-scale errors primarily reflect model fit rather than back-transform artifacts.

Considering test-set accuracy, temporal stability, interpretability, and alignment with domain mechanisms, GAM_SplineApprox is selected as the best-performing model for this dataset and period. Hyperparameter tuning was restricted to the validation split, and final model comparison relied on held-out test metrics; to further strengthen selection rigor in future iterations, nested or rolling-origin cross-validation will be incorporated to avoid any residual selection bias. The chosen model offers a balanced trade-off between predictive performance and transparent, mechanism-consistent effects, making it appropriate for downstream reporting and deployment.
Diagnostics and Risks
This section evaluates the robustness of results and identifies model and data risks that could undermine inference and deployment. Three model families were trained on a time-ordered 70/15/15 split with the target modeled in log space and evaluated both in log and price scales via smearing. The GAM with univariate smooths and a 2D latitude–longitude spline achieved the strongest test generalization among candidates. Nevertheless, the validation-to-test gaps observed—particularly the stronger validation performance of the monotonic gradient boosting relative to its weaker test error—indicate sensitivity to temporal composition and hyperparameters, and they signal potential overfitting to the validation slice or covariate shift between validation and test periods.

Residual behavior in log space is broadly well-controlled by the log1p transformation, consistent with the compact central mass observed for Y. Heteroskedasticity remains a concern in specific covariate regions documented by visualization: price variance is larger in transit-rich areas at very short MRT distances, where micro-location and amenity nuances generate wider dispersion. Smearing corrections close to unity suggest approximately log-normal residuals on average, yet the presence of tails in Y and extremes in predictors means back-transformed price errors can still be economically material. Diagnostic follow-ups should include scale–location plots and residuals versus fitted values stratified by key drivers (distance to MRT, amenity density, and coordinates) to assess variance stability and identify regimes where uncertainty widens.

Spatial dependence constitutes a primary diagnostic axis. Exploratory maps and density plots show pronounced spatial clustering of transactions and prices, implying that residuals may retain spatial autocorrelation if spatial effects are incompletely specified. The GAM’s 2D spline over latitude–longitude is designed to absorb smooth spatial gradients, but residual mapping and formal tests (e.g., Moran’s I on residuals) are needed to verify that neighborhood effects and corridor-specific premiums have been adequately captured. Uncontrolled spatial autocorrelation inflates Type I error in parametric components and narrows prediction intervals spuriously in clustered areas.

Multicollinearity and confounding are structurally embedded in this dataset. Accessibility and amenities co-vary with spatial coordinates, and the correlation matrices reveal strong relationships among latitude, longitude, convenience stores, and MRT distance. Such dependence can inflate variance of individual effect estimates, obscure partial attributions, and destabilize coefficients under re-sampling. The ElasticNet’s regularization, the tree ensemble’s partitioning, and the GAM’s smooths mitigate but do not eliminate these risks. Variance inflation diagnostics, condition numbers, and partial correlation analyses controlling for coordinates are recommended before interpreting marginal effects, and feature design should prioritize orthogonalized or composite spatial–accessibility representations when possible.

Outliers and leverage points are present in both predictors and the target. Extreme coordinates at the geographic fringes, rare very long MRT distances, and the tails of the log-price distribution can exert disproportionate influence on parametric fits and local tree splits. Visual evidence shows isolated extreme points aligned with low amenity density or peripheral locations and high-price pockets near very short distances. Robustness checks—robust regression fits, winsorization sensitivity, leverage and influence measures, and model re-fitting with and without extreme tails—are necessary to ensure stability of coefficients and feature importances, and to protect forecast accuracy for typical segments.

Temporal structure carries two distinct risks: imbalance and leakage. Visualization indicates uneven temporal coverage and a short-run nonlinearity in the median log price over time, which, if untreated, can bias cross-sectional attributions. The modeling design uses a chronological split, which reduces look-ahead. However, selecting the “best model” based on test-set performance constitutes a selection-on-test practice that can induce optimistic bias. Model selection should be finalized on validation performance (or via nested rolling-origin cross-validation), with the test set reserved strictly for the final, single-shot evaluation.

Specification risks arise from functional form choices. The monotonic constraints in the boosting model encode domain knowledge (price decreases with MRT distance, increases with amenity density), improving plausibility and guarding against spurious patterns in small samples. Yet real-world relations can exhibit localized non-monotonicity (e.g., noise externalities adjacent to stations or congestion in dense retail corridors), so constrained learners may underfit such effects. The GAM helps by flexibly learning smooth nonlinearities, but it assumes smoothness that may blur sharp submarket boundaries. Comparative partial dependence and accumulated local effects plots, along with localized residual analyses, can verify whether chosen constraints and smoothness levels align with empirical patterns across regimes.

Uncertainty quantification should reflect distributional and structural features. Given heteroskedasticity in accessibility-rich zones and spatial clustering, nominal error bars may understate risk. Conformal prediction or quantile regression can deliver distribution-free or tail-sensitive intervals, respectively, while bootstrapping under rolling-origin resampling can capture temporal and spatial sampling variability. Reporting prediction intervals on both log and price scales, alongside smearing-aware calibration checks, will improve decision usefulness.

Data coverage and sampling composition are additional sources of risk. The late-period concentration of transactions and spatial hotspots imply that the model learns primarily from urban-core conditions and recent market phases; performance and attributions may degrade in peripheral geographies or earlier-phase regimes. Stratified diagnostics by time bins, MRT-distance bands, and amenity tiers help quantify stability. Where sample scarcity is pronounced, regularization should be strengthened, and predictions should carry wider intervals.

Preprocessing and deployment coupling pose operational risks. Standardization and engineered features are encapsulated within model pipelines for some learners but implemented externally for others; mismatch between training-time transformations and inference-time processing can cause silent degradation. The GAM’s training bounds for splines define the reliable domain; out-of-range inputs should be clipped or handled with explicit extrapolation rules, and such behavior must be documented. Versioned serialization of preprocessing steps together with the model mitigates reproducibility and drift risks.

Collectively, these diagnostics indicate that the current best model achieves strong out-of-sample accuracy in the studied window while facing concentrated risks from spatial dependence, correlated location features, temporal imbalance, and tail observations. Prioritized mitigations include selection discipline that excludes the test set, spatial and time-aware validation, influence-robust fitting and sensitivity checks, and calibrated uncertainty reporting matched to accessibility and spatial regimes. These steps will enhance robustness and ensure reliable, policy- and investment-relevant inference.
Residual analysis
This section examines whether model residuals are unbiased, approximately homoscedastic in log-space, and free of systematic patterns over time and space. All models were trained on the log-transformed target and evaluated with time-aware splits, which makes residual diagnostics particularly informative about temporal generalization. Price-level metrics were produced via a global smearing correction computed from training residuals, so the distributional properties of log-residuals directly affect the fidelity of price-scale back-transformations.

Across models, the dispersion of residuals is lowest for the GAM on the test set, with a test log RMSE of 0.1944 and R² of 0.7673, indicating tighter error spread and higher explained variance out-of-sample. In contrast, ElasticNet and the monotonic GBT both exhibit higher test residual dispersion (test log RMSE near 0.24 and R² around 0.64–0.65). The generalization gap is most pronounced for the GBT, whose validation errors are substantially lower than test errors, suggesting either sensitivity to temporal distribution shift or mild overfitting despite monotonicity constraints. The GAM’s smaller gap between validation and test indicates more stable residual behavior across time.

The smearing factors derived from training residuals in log-space are close to one for all models (ElasticNet ≈ 1.0204, GBT ≈ 1.0135, GAM ≈ 1.0148). Values in this range are consistent with relatively small log-residual variance and limited right-skew when mapped back to the original price scale. Practically, this implies that the global smearing correction provides a modest but meaningful adjustment to reduce bias from the log-to-price back-transformation. Given the proximity of these factors to unity, there is no indication that extreme non-Gaussian tails in log-residuals dominate model error.

With respect to variance patterns, the log transform typically mitigates scale effects, yielding more stable residual variance across fitted values. Nonetheless, earlier bivariate explorations pointed to heteroskedastic relationships, especially along distance to MRT and amenity counts, which could persist to a degree even after transformation. A rigorous check would compare residual magnitude against fitted values and key predictors to detect any funneling or banding; if present, it would motivate either predictor-dependent variance modeling or robust losses. In price space, some heteroskedasticity is expected irrespective of model choice due to the multiplicative nature of prices.

Temporal structure is a central diagnostic given the rolling-origin split. Residuals plotted against transaction date should be scrutinized for drift, clustering, or autocorrelation. The observed lift in test errors for ElasticNet and GBT relative to validation suggests that temporal nonstationarity affects these models more strongly, potentially through changing spatial mix or evolving amenity effects. Formal tests such as runs tests or Durbin–Watson on validation/test residuals can help quantify serial dependence; where dependence exists, it argues for richer time features or hierarchical structures that better absorb short-run shifts.

Spatial patterns are another key lens. The GAM includes a tensor spline over latitude–longitude, which should suppress broad spatial residual structure by capturing smooth location effects. Residual spatial diagnostics—e.g., Moran’s I or semivariograms—would verify whether remaining errors are randomly scattered or concentrated in certain districts. If residuals from ElasticNet or GBT display stronger spatial clustering than those from the GAM, that would be consistent with their weaker explicit spatial smoothing and would further justify the GAM’s selection on stability grounds.

Finally, outlier- and leverage-sensitive behavior should be monitored through the tails of the residual distribution. While log-transform and regularization limit sensitivity, extreme observations in accessibility or rare spatial pockets can still drive localized error spikes. If residual tails are heavy or asymmetrical in specific subgroups, targeted feature refinements (e.g., local interactions, refined spatial bases) or robust objectives can be prioritized. Overall, the residual diagnostics indicate that the GAM achieves the most stable and well-dispersed residuals across time, with small log-scale variance and limited evidence of systemic bias after smearing, while the other models exhibit larger temporal sensitivity that merits additional regularization and temporal feature enrichment.
Multicollinearity
Multicollinearity arises in this dataset primarily from overlapping locational constructs. Spatial coordinates (latitude X5 and longitude X6) are strongly dependent within a compact geographic extent, and both co-vary with accessibility to transit (X3 distance to MRT) and amenity density (X4 convenience stores). Pairwise correlation evidence and spatial clustering indicate that X3 and X4 capture facets of the same urban structure embodied by X5–X6, creating a correlated block of predictors. A secondary source is the relationship between transaction timing and building age, where later sales are associated with newer properties, introducing dependence between X1 and X2. These structures imply redundancy and shared information among predictors, which must be diagnosed and managed before drawing coefficient-level inferences.

In linear and generalized linear models, multicollinearity inflates standard errors of estimates, destabilizes coefficient signs and magnitudes, and undermines interpretability of partial effects. When predictors move together, small changes in sample composition or preprocessing can produce large shifts in fitted coefficients without materially altering predictions, masking the true economic mechanisms. Tree-based learners and additive smooth models are less sensitive to collinearity for prediction, yet disentangling effects for interpretation remains challenging because importance and smooth terms can be shared across correlated variables. As a result, robust diagnostics and principled feature reductions are necessary to ensure stable estimation and credible attribution.

Variance inflation factor (VIF) assessment will be conducted on the preprocessed training design matrix, focusing on the core predictors X1, X2, transformed accessibility (e.g., log1p for X3, if adopted), X4, and coordinates X5–X6. VIF quantifies how much the variance of a predictor’s coefficient is inflated by linear dependence with other predictors; high values indicate redundancy. Complementary diagnostics include tolerance (the inverse of VIF), condition number of the design matrix, and partial correlations that control for spatial coordinates to isolate accessibility and amenity effects. Because transformations and interaction terms can introduce additional dependence, features will be mean-centered prior to forming interactions, and hierarchical VIF checks will be applied to the base terms first and then to interaction or spline bases. All diagnostics will be computed on the training folds in a time-aware setup to avoid leakage from future periods.

Preprocessing choices interact with collinearity and will be standardized accordingly. Mean-centering and variance scaling reduce numerical ill-conditioning and help separate main effects from interactions. Feature transforms already planned—log1p on X3, robust scaling or standardization on X2 and X4, and standardized coordinates—should be retained to stabilize relationships. Integer-valued X4 remains banded after standardization; centering mitigates the induced dependence when forming X3×X4 or polynomial terms.

Redundancy reduction will follow a structured plan that preserves business meaning while improving identifiability:
- Spatial basis replacement: instead of raw latitude and longitude in linear models, use orthogonalized spatial components (e.g., principal components of X5–X6) or neighborhood encodings such as geohash/cluster indicators. In GAMs, adopt a two-dimensional tensor-product smoother over X5–X6 to absorb broad spatial gradients, thereby reducing pressure on X3 and X4.
- Residualization for de-spatialized effects: regress X3 and X4 on the spatial basis (X5–X6 or their PCs) and use residuals as predictors. These residuals represent local accessibility and amenity deviations beyond baseline location, lowering VIF and clarifying their marginal contributions.
- Composite or constrained features: construct interpretable, centered indices that combine accessibility and amenity (for example, a standardized score of −X3 with X4), then test whether the composite replaces the individual components without loss of fit. If interpretability requires separate reporting, retain both but with regularization and residualization.
- Targeted exclusion: if a predictor offers minimal incremental signal once spatial smooths or indices are included, remove it from linear specifications to reduce redundancy. This is a last resort after testing residual information content.

Model-specific mitigation reinforces these steps. ElasticNet blends L1/L2 penalties, selecting among correlated predictors and stabilizing coefficients; coefficient paths and feature selection stability will be monitored across time-aware folds to guard against arbitrary choices within correlated groups. Gradient-boosted trees subject to monotonic constraints on X3 and X4 handle correlation well for prediction but distribute importance across collinear variables; permutation importance and SHAP dependence plots should be interpreted with the spatial basis in place to reduce confounding. In GAMs, concurvity diagnostics (the additive-model analogue of collinearity) will be reviewed; using penalized smooths for X5–X6 alongside separate smooths for X3 and X4, and centering all terms, mitigates overlap in functional spaces.

Operationally, the workflow is as follows: compute baseline VIF on the training set for the centered predictors; if latitude–longitude VIFs are elevated or drive inflation in X3 and X4, replace raw coordinates with orthogonal spatial components or a tensor smoother, then recompute VIF. Residualize X3 and X4 with respect to the spatial basis to obtain local effects and reassess diagnostics. Center variables before adding interactions or spline bases, and limit the number of highly correlated transforms used simultaneously. For linear models, prefer fewer, well-identified features; for flexible models, ensure the spatial term absorbs broad gradients so accessibility and amenity capture localized deviations. These actions balance predictive performance with interpretability, reduce redundancy, and deliver stable coefficient estimates that align with the dataset’s urban structure.
Outliers and leverage
Outliers and leverage in this study pertain to two distinct but interacting phenomena: extreme predictor values that can exert disproportionate influence on model estimates, and extreme responses that manifest as large residuals even when predictors are typical. In the present dataset, the primary leverage risk arises from X3 distance to the nearest MRT station, where standardized tails include unusually close and unusually far locations relative to the central mass. On the outcome side, Y house price of unit area (log1p) exhibits a compact central body with sparse low-end and high-end points that lie well beyond the typical range. Together, these patterns imply that a small number of transactions—either exceptionally distant from MRT stations or exceptionally priced—can alter fitted relationships if left untreated.

The statistical consequences of these extremes are well understood. High-leverage X3 observations can tilt slope estimates in linear models, stretch spline smoothers in generalized additive frameworks, and create local splits that dominate tree ensembles. This effect does not require large residuals; leverage operates through the geometry of the design matrix, so even well-predicted extremes can disproportionately influence parameter estimates. Conversely, outliers in Y create large residuals that inflate error metrics, distort variance assumptions, and can trigger instability in loss minimization. The bivariate pattern of Y versus X3 also indicates heteroskedasticity: price dispersion is wider near transit-rich areas (small X3), which magnifies the impact of any extreme Y within this region. While monotonic constraints in gradient boosting and the log1p transform for Y reduce sensitivity to such distortions, they do not eliminate the leverage mechanism inherent in extreme predictor positions.

Several preprocessing elements already attenuate these risks. X3 is transformed with a log1p function and clipped by interquartile-range thresholds before robust scaling, which compresses extreme distances and limits the influence of fringe observations. Y is modeled on the log1p scale, substantially reducing the right-tail burden typical of monetary variables and stabilizing variance across the predictor space. For count-like amenities, X4 is upper clipped and rounded prior to standardization, which constrains integer-band extremes that could otherwise align with transit proximity and co-propagate leverage through collinearity. These steps collectively moderate the tails and improve numerical stability in downstream models.

Targeted diagnostics remain necessary to quantify residual influence and verify that preprocessing has contained leverage. Recommended checks include:
- Leverage and influence measures in the log-space models, such as hat values and Cook’s distance from a linear or penalized baseline, to identify X3-driven high-leverage points versus pure residual outliers in Y.
- Studentized residuals and partial-residual plots for the X3–Y relationship, stratified by amenity density X4, to separate variance structure from true anomalies.
- Sensitivity analyses via leave-one-out or k-fold influence curves on model performance and key coefficients/smooths, highlighting whether removing a small set of extremes materially shifts estimates.
- Spatial cross-checks on flagged records to confirm coordinate validity and to determine whether apparent extremes align with legitimate peripheral neighborhoods rather than data entry artifacts.

Mitigation strategies should be proportionate and consistent across preprocessing, modeling, and evaluation. Robust losses (Huber or quantile) reduce the penalty of extreme residuals without discarding information, and they align with the broader improvement plan that considers robust uncertainty quantification. Where leverage is concentrated at the far end of X3, maintain the current IQR-based capping and consider adding explicit indicators or bands for very long MRT distances, allowing models to represent a separate regime without overfitting a few points. For spline-based models, apply stronger regularization on the X3 smooth and verify that smooth effects do not overreact at the boundaries. In tree ensembles, keep directional constraints on X3 and X4 and limit depth or leaf size to avoid learning idiosyncratic splits around singletons. In terms of back-transformation, use smearing to report price-scale metrics so the evaluation fairly reflects the impact of extreme residuals while respecting the log-space training assumption.

Operationally, institute a leverage-and-outlier register: document flagged observations, their preprocessing outcomes (e.g., clipped values), and their influence scores; require revalidation of these records before model retraining or deployment. During time-aware validation, ensure that leverage effects are not amplified by temporal clustering; nested rolling-origin schemes reduce the risk of optimistic performance driven by a few extreme early or late-period points. In deployment, preserve the same clipping and scaling rules and monitor incoming X3 and Y distributions for tail drift, triggering alerts when new leverage patterns emerge. These steps contain the statistical risks posed by extreme MRT distances and price outcomes, sustain interpretability under monotonic and spline specifications, and protect generalization across market segments.
Temporal leakage check
Temporal leakage arises when information from future periods inadvertently influences model training, hyperparameter tuning, or model selection, thereby inflating performance estimates and undermining out-of-sample validity. In time-ordered prediction tasks, the principal safeguard is an immutable chronological split that ensures the model only learns from past data to forecast future outcomes. Under this paradigm, the test set must represent strictly unseen future observations and remain unused until all modeling decisions are finalized.

The current workflow implements several appropriate controls against look-ahead. Data are sorted by transaction_date and split 70/15/15 into train, validation, and test by time order, which preserves temporal precedence. ElasticNet tuning uses a time-series cross-validation strictly within the training window, avoiding future contamination across folds. Smearing correction factors for back-transforming log-space predictions are computed using training residuals only, which prevents test information from affecting price-level metrics. Feature engineering steps (polynomial terms for age and distance, latitude–longitude interaction) derive from contemporaneous predictors and do not embed future target information. These practices collectively reduce the risk of temporal leakage during model fitting and calibration.

A critical leakage risk is present at the model selection stage: the best model is chosen based on test performance. Using test metrics to decide which model to deploy constitutes indirect use of future data in the decision process. This practice biases the test estimate downward and compromises its role as an unbiased generalization check. Evidence in the reported workflow indicates that the “selection score” explicitly matched the test log RMSE, meaning the test set informed the final choice among ElasticNet, monotonic GBT, and GAM. Methodologically, the test set must be held back and consulted only once, after the model and its hyperparameters have been determined using training and validation data (or nested cross-validation), to maintain the integrity of performance assessment.

To remediate this issue, model comparison and hyperparameter selection should be conducted on validation data or via nested, time-aware cross-validation. The recommended process is: freeze the test set before any modeling begins; perform hyperparameter tuning with rolling-origin or expanding-window validation on the training period; compare candidate models using validation summary metrics (for example, median or mean RMSE across temporal folds); select the final model without reference to test results; refit the selected model on the combined train and validation data; finally, compute test metrics once and document them as the sole out-of-sample evaluation. This procedure removes test-set influence from model choice and restores an unbiased estimate of generalization.

Beyond test-set selection, an additional methodological caution concerns the reporting of validation metrics after refitting the final model on train plus validation. While refitting on train and validation is appropriate before testing, validation metrics computed from a model trained on that same validation sample are not strictly out-of-sample and may be optimistic. If validation performance needs to be reported, it should be derived from models trained exclusively on the training window or from held-out validation folds not used in the refit. Alternatively, adopt nested rolling-origin evaluation that yields robust validation estimates while leaving the test set untouched.

In practice, temporal leakage prevention requires consistent governance across the pipeline. All transformations and scalers must be fit within the training folds during tuning and then re-estimated only on train plus validation for the final model; no step should consult test data. Early stopping and monotonic constraints may rely on validation data but must not be tuned against the test set. Model selection criteria should be pre-specified and based on validation metrics, with tie-breakers favoring simplicity and stability rather than test outcomes. Adhering to these controls keeps the test evaluation independent and credible, ensuring that reported performance genuinely reflects prospective accuracy on future data.
Improvement Plan
This improvement plan targets the specific risks and opportunities revealed by the current exploratory analysis and modeling results. The principal objectives are to increase temporal robustness given the late-period sample imbalance, control spatial confounding and multicollinearity among location-related predictors, capture documented nonlinearities and interactions, mitigate the influence of outliers and heteroskedasticity, and harden the deployment pipeline with reproducible preprocessing, calibrated back-transforms, and monitoring for drift.

A time-aware validation regime will be adopted to reduce selection bias and variance in performance estimates. Hyperparameter tuning and model selection will use nested rolling-origin cross-validation, with outer folds that advance chronologically and inner folds that tune within the training window. An embargo or gap period around fold boundaries will be applied to limit leakage from temporal adjacency. Performance will be reported in log space for comparability and on the price scale via a smearing correction, with attention to the stability of errors across folds rather than single-split outcomes. As spatial clustering is prominent, complementary checks with spatial or spatiotemporal blocking will be conducted to assess generalization across neighborhoods.

Spatiotemporal feature engineering will be expanded in line with observed mechanisms. For space, compact encodings such as geohash or neighborhood clusters will be added, together with continuous measures like distance to central business districts and corridor indicators to complement raw latitude–longitude. For accessibility and amenities, augmentations include network-aware or travel-time proxies when available, and counts within radius bands to capture scale effects. For time, flexible trend indices and seasonal or piecewise components will be derived from the transaction date to represent the nonlinearity around the local peak phase. Interactions grounded in the analysis, notably distance-to-MRT by convenience-store density and age by location, will be incorporated to reflect complementarity and spatial heterogeneity.

Smoothing and regularization strategies will be formalized to balance flexibility and generalization. The generalized additive model will be refit with principled smoothing-parameter selection using methods such as GCV or REML, with tensor-product smoothers over latitude–longitude and monotonic constraints on theoretically directional effects (decreasing in MRT distance, increasing in amenity density). Basis sizes and penalties will be tuned under the time-aware validation scheme. For ElasticNet, the search space for alpha and l1 ratios will be expanded, and feature scaling and collinearity diagnostics will guide penalization. For gradient boosting with monotonic constraints, the hyperparameter grid will be widened with careful early stopping, and constraints will be maintained on distance and amenity features to preserve plausibility while testing whether additional constrained features improve stability.

Robustness and uncertainty quantification will be strengthened to address heteroskedasticity and tail sensitivity. Robust losses such as Huber will be tested for point forecasts, and quantile objectives will be used to model conditional distributional properties across the accessibility and amenity spectrum. Distribution-free conformal prediction intervals calibrated on rolling windows will provide time-consistent uncertainty bands. Outlier influence will be controlled through diagnostic screening and, where justified, winsorization or robust estimators, with sensitivity analyses run to document the impact of extreme distance, coordinate, and price points.

Feature parity and preprocessing consistency across models will be enforced to ensure fair comparison and reliable deployment. All models will consume an aligned feature set and shared transformations: type coercion, imputation strategies, clipping rules for extreme values, standardization, and domain-specific transforms such as log1p on skewed distance measures where specified in preprocessing design. Interaction terms and spatial encodings will be harmonized so that differences in performance reflect modeling capacity rather than feature discrepancies. Variance inflation and partial correlations will be reviewed after updates to control multicollinearity.

Data quality assurance will focus on high-leverage geospatial and temporal edges. Coordinate validity will be reconfirmed for fringe observations; duplicates and potential geocoding errors will be audited; and extreme values in accessibility and amenities will be rechecked for measurement consistency. Where structural outliers represent true submarkets, explicit indicators or stratified modeling will be considered to reduce undue leverage. Residual diagnostics will be iterated after each improvement cycle to verify reductions in patterning by distance, amenities, and coordinates.

The deployment pipeline will be hardened to ensure reproducibility and safe operation. All preprocessing steps and model parameters, including the smearing factor used for price-scale back-transformation, will be serialized together with the model artifact. The inference interface will perform strict input validation, range checks, and schema enforcement. Monitoring will track drift in the distributions of transaction time, MRT distance, convenience-store density, and coordinates, as well as error calibration and interval coverage; threshold-based triggers for retraining or recalibration will be defined. Versioning, model registries, and rollback mechanisms will be implemented to support controlled updates and canary releases.

Collectively, these steps aim to yield models that generalize better across time and space, express domain-credible effects with appropriate smoothing and constraints, deliver calibrated uncertainty for decision support, and operate within a robust, monitored pipeline suitable for production use.
Time-aware validation
Time-aware validation is necessary when observations are temporally ordered and future inference depends on learning from earlier periods. A random split would break the temporal dependency and induce leakage, whereas ordering by transaction date aligns the evaluation with deployment. The current workflow already applies a chronological 70/15/15 split and uses time-series cross-validation for tuning in the linear model. To further reduce selection bias and quantify temporal robustness across models, nested rolling-origin cross-validation provides a more rigorous design.

Nested rolling-origin cross-validation structures evaluation in two layers. The outer layer assesses generalization under successive forward-chaining splits: each fold trains on an earlier, contiguous block and validates on the immediately following block, maintaining the real-world direction of time. The inner layer, executed within each outer training block, tunes hyperparameters and selects preprocessing options using a smaller set of forward-chaining splits. This design ensures that all decisions—scaling, transformations, and model parameters—are informed only by past data relative to the validation horizon in each fold. A final test block, held out from all model selection, is used once to estimate out-of-sample performance after refitting on all pre-test data with the selected configuration.

Practical implementation hinges on refitting the entire pipeline within each fold. Any scaling and transformations must be estimated using only the training portion of that fold, and applied to its validation portion without peeking ahead. When modeling in log-space, the smearing correction for price-scale metrics should be computed from residuals in the corresponding training fold rather than global residuals, to avoid optimistic back-transformation. Metrics should be tracked both in log-space (e.g., RMSE, R²) and in price-space via smearing, preserving comparability with the current reporting convention.

Designing the rolling windows involves several choices. An expanding training window with a fixed validation horizon reflects the cumulative learning process and is appropriate when later data remain broadly consistent with earlier dynamics. A sliding window, where the training span shifts forward and retains a fixed width, is useful if drift is expected and older observations become less relevant. The step size can follow the natural temporal granularity of the data (e.g., months), ensuring non-overlapping validation blocks. Minimum training span and the number of outer folds should balance estimation stability against the limited total horizon; too few folds inflate variance in fold-level estimates, while too many yield very small validation blocks.

Model-specific adjustments promote consistency. For regularized linear models, the inner loop already aligns with time-aware tuning via TimeSeriesSplit; extending this approach to all hyperparameters and feature decisions preserves temporal integrity. For gradient boosting with monotonic constraints, replacing a single, fixed validation set with an inner rolling-origin loop avoids overfitting to one period and yields more stable early-stopping rounds and learning-rate choices across time. For GAM-like spline models, selecting knot numbers and penalties via inner rolling-origin folds reduces the chance of tailoring smoothness to a single validation slice and improves the reliability of spatial and univariate smooth effects over successive months.

Reporting from nested validation should include fold-level metrics and their aggregation. Present mean and dispersion (e.g., standard deviation) across outer folds for log RMSE and log R², and corresponding price RMSE/MAE using per-fold smearing. Summarize hyperparameter stability by the distribution of selected values across outer folds; large variability can indicate sensitivity to temporal drift and motivates more robust regularization or simplified feature sets. After choosing the model class and a stable configuration based on outer-fold summaries, refit on all data up to the final test horizon and perform a single, time-ordered test evaluation to estimate forward performance without leakage.

Adopting nested rolling-origin cross-validation yields three benefits. First, it reduces optimistic bias from reusing a single validation period for selection, leading to more credible model comparisons. Second, it exposes temporal fragility: models that perform well only in certain months or conditions will show higher variability across folds, guiding risk-aware deployment. Third, it improves reproducibility and governance by documenting a selection process that respects the time structure end-to-end, aligning the evaluation protocol with how the model will be used in practice.
Spatiotemporal features
This section augments the location and time representation to better capture neighborhood effects and urban centrality that are only partially expressed by raw latitude/longitude and the MRT/amenity proximities. The empirical patterns indicate a strong spatial gradient in prices and clustering of observations within specific corridors, alongside an uneven temporal coverage with later-period concentration. Enriching the design with geohash-based neighborhood identifiers and distance-to-CBD features provides interpretable, low-leakage structure that complements continuous coordinates and reduces residual spatial autocorrelation in the target after controlling for existing predictors.

Geohash-based neighborhood encoding. A geohash discretizes geographic coordinates into a hierarchical grid that can serve as neighborhood identifiers at multiple spatial scales. Compared with using raw latitude and longitude alone, geohashes act as local fixed effects that absorb unobserved neighborhood attributes (zoning, school quality, micro-amenities) and help stabilize estimates where spatial clustering is prominent. In practice, a medium precision is selected to balance spatial resolution against sample sufficiency per cell, with a hierarchical design that includes both a parent geohash (coarser area) and a child geohash (finer area). To mitigate sparsity and reduce overfitting, categorical encoding should use out-of-fold target encoding with Bayesian smoothing and hierarchical pooling (child → parent → global), computed in a time-aware manner so each fold’s encoding uses only past data relative to the fold boundary. This preserves temporal causality and prevents leakage from validation or test periods. For cold-start geohashes unseen in training, the encoding falls back to the parent cell’s estimate or the global prior, ensuring robust inference at deployment.

Distance to CBD(s) and urban centrality. Euclidean (great-circle) distance to one or more central business district anchors summarizes radial accessibility to the city’s economic core(s), complementing distance to the nearest MRT station. This feature captures agglomeration effects, job accessibility, and central amenity bundles not fully represented by local store counts. If multiple centers exist, distances can be computed to each and aggregated as the minimum distance (closest center) or as a set of separate distances with regularization to control multicollinearity. Distance should be standardized and optionally transformed (e.g., log1p) to reflect diminishing marginal effects with increasing remoteness and to stabilize tails. Because centrality typically exhibits a monotonic premium, models that support directional constraints can enforce a non-increasing effect of CBD distance on log price. Interaction terms between CBD distance and MRT distance, and between CBD distance and store density, diagnose whether transit access or retail intensity mitigates the discount of peripheral locations.

Spatiotemporal coupling of neighborhood effects. Neighborhood price levels evolve over time; therefore, geohash encodings benefit from a time-aware construction. Rolling-origin, out-of-fold target encodings computed within time windows (for example, using only transactions that precede each observation’s date) produce dynamic neighborhood priors and avoid attributing market-wide appreciation to cross-sectional location features. A two-component scheme is recommended: a global time trend or price index to capture market-wide shifts, plus a geohash-level deviation that tracks local momentum. This decomposition supports fair comparisons across periods and reduces bias in estimating the marginal effects of accessibility and age. When segment counts are small in a period, hierarchical pooling toward the parent geohash and the global index stabilizes estimates.

Integration into the modeling suite. For ElasticNet, include: one-hot or smoothed-encoded geohash at two resolutions (subject to regularization), CBD distance (standardized or log1p), and selected interactions (CBD distance × MRT distance; CBD distance × store density). Regularization will shrink unstable geohash levels and control multicollinearity with latitude/longitude. For gradient boosting with monotonic constraints, add CBD distance with a decreasing constraint and supply geohash via smoothed encodings rather than high-cardinality dummies; the tree model can then learn locally varying slopes while respecting directional priors. For the GAM, include a smooth of CBD distance and, optionally, a factor-smooth interaction that allows geohash-specific deviations with shrinkage, or retain the existing latitude–longitude tensor smooth and add CBD distance as a univariate smooth to capture the radial component explicitly. Across models, features must be constructed identically under the time-based split, and encoding must be performed within each training fold to maintain parity and prevent leakage.

Validation, diagnostics, and risk controls. The incremental value of geohash and CBD distance should be assessed via nested, time-aware cross-validation using the established 70/15/15 chronological split as a holdout for final testing. Compare models with and without the new features on log-scale RMSE/R² and price-level RMSE/MAE after smearing. Inspect variance inflation for linear models and verify that the addition of CBD distance does not destabilize coefficients for latitude, longitude, or MRT distance; if redundancy emerges, prefer interpretable combinations (e.g., replacing raw coordinates with the lat–lon tensor smooth plus CBD distance, or using geohash encodings with reduced coordinate emphasis). Use partial dependence or accumulated local effects to confirm the expected monotonic decrease of price with CBD distance and to evaluate interaction curvature with MRT distance and amenity density. Sensitivity analyses over geohash precision and smoothing strength should target a minimum observation count per cell to avoid overfitting. Spatial residual maps and time-sliced residual summaries can confirm that neighborhood fixed effects evolve coherently and that the time-aware encoding eliminated temporal leakage.

Operationalization and monitoring. Production pipelines must serialize the geohash computation, hierarchical encoding parameters, CBD anchor coordinates, and distance transformations jointly with the model. At inference, unseen geohashes should follow the predefined backoff hierarchy. Monitoring should track drift in the distribution of geohash frequencies, CBD distance, and their interactions with transaction date; alerts are warranted for shifts that reduce cell support or alter the radial gradient. Documentation should record geohash precision, smoothing priors, CBD anchor definitions, and monotonic constraints to support interpretability and governance. This spatiotemporal feature set strengthens location representation, aligns with economic theory of centrality and neighborhood effects, and improves robustness against spatial autocorrelation and temporal composition shifts.
Smoothing and regularization
Smoothing introduces a structured prior on functional form and regularization governs model flexibility. In the current setup, the additive spline model uses finite-dimensional spline bases with a global ridge penalty to control wiggliness, while gradient boosting relies on shrinkage and early stopping, and ElasticNet imposes L1/L2 penalties on linear and polynomial terms. The observed advantage of the spline-based approach on the held-out test split indicates that capturing non-linear main effects and a smooth spatial surface is beneficial. However, the present tuning relies on a limited grid over the penalty strength and knot counts, which constrains the ability to optimally balance bias and variance across distinct smooth components.

A principled selection of smoothing parameters will be implemented via generalized cross-validation or restricted maximum likelihood. GCV estimates the optimal penalty by minimizing a cross-validation proxy that accounts for effective degrees of freedom, thereby discouraging overfitting without exhaustively enumerating hyperparameters. REML treats smooth coefficients as random effects and estimates variance components directly from the likelihood, which is often more stable in small samples and better calibrated in the presence of correlated covariates. Both approaches can be applied per smooth term, allowing separate control of univariate functions and tensor-product spatial surfaces, and produce interpretable statistics such as effective degrees of freedom that are useful for diagnostics.

The search space for smoothing and regularization will be expanded to reduce sensitivity to arbitrary settings. For additive splines, this includes exploring broader log-spaced penalty ladders for each term, varying knot densities within reasonable bounds to test adequacy without introducing undue oscillation, and considering alternative basis families (for example, penalized B-splines or thin plate regression splines) under comparable cubic degrees. For the latitude–longitude tensor product, separate penalties will be assigned to each marginal basis and to the interaction surface to prevent the spatial component from absorbing noise. Where domain knowledge supports shape restrictions, monotonicity constraints can be embedded in the smoothers to enforce decreasing effects of distance to transit and increasing effects of amenity counts, complementing the constraints applied in boosted trees.

A robust validation protocol will accompany the expanded tuning. Time-aware cross-validation will assess stability of selected penalties across rolling windows, and effective degrees of freedom per term will be monitored to detect under- or over-smoothing. Identifiability will be maintained by centering smooths to avoid confounding with the intercept, and concurvity will be reduced by standardization of inputs and by separating penalties across correlated terms. Boundary behavior will be controlled by preferring bases with well-behaved tails and by constraining extrapolation outside training ranges. Residual diagnostics will be used to verify that the chosen level of smoothing mitigates structured error while preserving genuine curvature.

The expected impact of adopting GCV/REML and a broader regularization search is improved generalization and interpretability. Smoothers with data-driven penalties tend to produce more stable effect curves in regions with sparse observations, a spatial surface that avoids spurious local extrema, and residuals with reduced heteroskedastic structure. These changes support more reliable price back-transformation by stabilizing residual distributions and maintain coherence with domain-consistent shapes. Overall, the combination of principled smoothing parameter estimation and expanded regularization search offers a systematic way to refine the additive model while aligning flexibility with evidence in the data.
Robust loss and uncertainty
Robust point estimation and calibrated uncertainty are necessary in this setting because the target is modeled in log space, the data exhibit extreme observations at both ends of the price distribution, and dispersion is not constant across covariates. Visual evidence of heavier tails in Y and larger residual spread in transit-rich zones implies that squared-error objectives alone can overweight unusual transactions and understate predictive variability where it matters most. A robust loss attenuates leverage from atypical observations without discarding data, while distributional methods and conformal calibration provide reliable prediction intervals under weak distributional assumptions.

For robust point prediction, Huber loss in log space offers a principled compromise between least squares and absolute deviation. With a tuning parameter that defines the transition from quadratic to linear penalty, Huber regression limits the influence of rare but extreme deviations in log price that arise from exceptional micro-location, atypical property features, or measurement noise. In linear models, this yields more stable coefficients than pure L2 under heavy-tailed residuals and reduces sensitivity to extreme MRT distances or amenity counts. The tuning parameter should be selected via time-aware cross-validation to balance bias and robustness; excessively small thresholds mimic L1 and can sacrifice efficiency, whereas overly large thresholds degenerate to L2 and forgo robustness. In gradient-boosted trees, switching from squared error to robust alternatives such as least absolute deviation or explicitly quantile-oriented loss further reduces the undue impact of outliers while preserving monotonicity constraints on accessibility and amenities.

Quantile regression extends robustness by modeling conditional quantiles of log price rather than the conditional mean. The pinball loss directly targets specified quantile levels and naturally adapts to heteroskedastic and asymmetric residuals observed across MRT distance and amenity density. Implementations can be aligned to each model family: linear quantile regression as a sparse baseline for interpretability, boosted trees with quantile objectives under monotone constraints for flexible nonlinearity, and spline-based approaches that replace squared loss with asymmetric absolute loss to estimate quantile smooths. A grid of quantiles (for example, central and tail levels) provides a conditional distribution view, supporting risk-aware decisions where the spread varies by location and accessibility. Post-hoc checks for quantile crossing are important; when it occurs, isotonic regression or constrained fitting across levels can restore monotonicity in the quantile index.

Conformal prediction supplies finite-sample, distribution-free prediction intervals that wrap around any of the trained models. A split-conformal protocol is appropriate under the time-based split: fit the model on the training period, compute nonconformity scores (absolute or signed residuals) on a held-out calibration period that strictly precedes the test period, and determine the empirical quantile of these scores to set interval widths for future predictions. This procedure avoids temporal leakage and guarantees marginal coverage under exchangeability assumptions. For asymmetric error structures, conformalized quantile regression constructs intervals by first estimating lower and upper conditional quantiles and then recalibrating the two-sided coverage with conformal adjustments; this approach retains flexibility for heteroskedasticity while preserving coverage guarantees.

Choosing the calibration scale affects interpretability and coverage properties. Constructing conformal intervals in log space yields multiplicative uncertainty when back-transformed, which is often appropriate for prices whose dispersion scales with level. Back-transformation can be performed naively via the exponential map or with a smearing adjustment to reduce bias on the price scale. Alternatively, one can conformal-calibrate directly on the price scale by measuring nonconformity as absolute price residuals after back-transformation; this choice prioritizes additive interpretability at the expense of mixing scales. The selection should match the downstream metric and communication needs: multiplicative for percentage-like uncertainty, additive for currency bounds.

Heteroskedasticity and structured dependence motivate local or adaptive conformal variants. Normalized conformal methods rescale residuals by a secondary model of the absolute error (for example, a model of |residual| as a function of MRT distance and amenities), shrinking or widening intervals where variability is predictably low or high while preserving coverage. In the temporal dimension, rolling-origin or prequential conformal updates the calibration set as time advances, improving responsiveness to market shifts encoded by transaction date. Spatially, group-conditional calibration within coarse latitude–longitude clusters or geohashes can better align interval width with neighborhood-specific volatility, provided each group has sufficient calibration samples; otherwise, locally weighted conformal using distance kernels avoids hard boundaries while emphasizing nearby residuals.

Integration into the current pipeline is straightforward. For the linear baseline, replace squared loss with a Huber objective and tune the transition parameter using rolling validation; for the boosted model, train a monotone-constrained quantile variant at desired levels to obtain conditional bands; for the spline model, fit separate smoothers for target quantiles or add a secondary model for absolute residuals to enable normalized conformal scaling. Calibrate split-conformal intervals using the validation fold already reserved by the time-based split, and apply the learned quantiles to the test fold. Report uncertainty alongside point metrics: empirical coverage against the nominal level, average and median interval width, and conditional coverage stratified by key drivers such as MRT distance, amenity count, and spatial clusters.

Two practical cautions improve reliability. First, robust losses mitigate but do not eliminate the need for influence diagnostics: extreme leverage in covariate space can still distort local fits, especially in sparse spatial or temporal regions. Second, quantile models may suffer from quantile crossing or widen excessively in poorly sampled tails; constrained post-processing and minimum-width regularization can stabilize behavior. Across models, monotonicity constraints remain valuable for credible extrapolation and help prevent pathological intervals in regions where theory dictates directional effects. With these safeguards, robust objectives coupled with conformal calibration deliver point predictions that are less sensitive to irregular observations and uncertainty estimates that are transparent, coverage-calibrated, and aligned to the temporal and spatial structure of the housing market.
Feature parity
This section establishes a consistent interaction specification across the ElasticNet, monotonic gradient boosting, and GAM families to ensure fair comparison, comparable inductive biases, and coherent interpretation. In the current setup, interaction capacity is heterogeneous: ElasticNet relies on explicit polynomial and bilinear terms (age_sq, distance_sq, lat_long), the gradient boosting model learns interactions implicitly without engineered crosses while being subject to monotonicity constraints, and the GAM implements a tensor-product smooth over latitude and longitude but no explicit cross between accessibility and amenities. Aligning these elements reduces attribution ambiguity in performance differences and supports reproducible model selection.

A gap analysis highlights three interaction categories that are theoretically motivated and repeatedly surfaced in the modeling plan: spatial interaction, amenity–accessibility interaction, and age–location heterogeneity. Spatial price variation is material and currently represented as lat_long in ElasticNet and as a 2D lat–lon smooth in GAM; the tree model captures such structure implicitly via hierarchical splits. The amenity–accessibility mechanism (distance_to_mrt with convenience_stores) is expected to be interactive due to complementarity or diminishing returns. Age–location heterogeneity allows depreciation to vary across neighborhoods. To reach feature parity, a common registry should specify these interactions, then be realized in model-appropriate forms.

Given the monotonic constraints applied to distance_to_mrt (decreasing) and convenience_stores (increasing) in the gradient boosting model, interaction design requires care. Adding a constructed feature that blends constrained variables (for example, distance_to_mrt × convenience_stores) can undermine global monotonicity with respect to the original features, because the unconstrained cross can reintroduce non-monotone effects. Two parity tracks are therefore recommended: a monotone track that excludes constructed crosses involving constrained variables and an unconstrained track that allows full interaction parity across models. This dual-track approach preserves the integrity of monotone models while enabling a like-for-like interaction assessment when constraints are relaxed.

For ElasticNet, parity can be implemented by expanding the design matrix with a small, interpretable set of interaction columns while retaining regularization to mitigate variance inflation. Concretely: add distance_to_mrt × convenience_stores to capture amenity–access interplay; add house_age × latitude and house_age × longitude to allow spatially varying depreciation; retain lat_long as the baseline spatial interaction; and optionally include distance_to_mrt × latitude/longitude if spatial heterogeneity of accessibility is suspected. All interaction columns should be centered and standardized before fitting to stabilize penalties, and multicollinearity should be monitored with VIF and mitigated via ElasticNet’s l1–l2 regularization and feature pruning if required.

For gradient boosting, the default capacity to learn interactions via splits can be augmented by engineered interaction features to match ElasticNet’s design in the unconstrained parity track. In that track, add the same crosses (e.g., distance_to_mrt × convenience_stores, house_age × latitude/longitude, lat_long) and remove monotonic constraints so that learned effects remain comparable to the other models. In the monotone track, preserve constraints on the original features and refrain from introducing constructed crosses that combine constrained variables; spatial interactions and age–location crosses can be included if they do not conflict with the monotonic guarantees, or they can be omitted and left to implicit learning. Hyperparameters controlling interaction complexity (tree depth, minimum leaf size, regularization) should be tuned to prevent spurious high-order interactions.

For the GAM, parity should be achieved with structured smooth interactions. The existing lat–lon tensor-product smooth remains the spatial interaction backbone. To introduce amenity–accessibility interaction, add a bivariate smooth over distance_to_mrt and convenience_stores. To model age–location heterogeneity, add a varying-coefficient structure where the effect of house_age is allowed to vary smoothly over latitude–longitude (e.g., a tensor-product smooth of age with the lat–lon surface). Smoothing penalties (alpha) control effective degrees of freedom and prevent overfitting; identifiability constraints should be enforced so that interaction smooths represent deviations beyond main effects.

A standardized evaluation protocol should be used to isolate the contribution of each interaction category via ablation. Recommended sequence: fit models with main effects only; add spatial interaction; add amenity–accessibility interaction; then add age–location interaction. Across stages, keep the target transformation (log-space) and the time-based split unchanged, and assess performance in both log space and price space with smearing correction. This design yields comparable deltas across model classes and clarifies which interactions materially improve generalization.

Risk controls are essential when expanding interaction capacity. Interaction features can amplify multicollinearity and variance; apply stronger regularization in ElasticNet, smoother penalties in GAM (with GCV/REML or a validation-based alpha search), and conservative tree complexity in boosting. For the monotone boosting track, document and verify that added features do not invalidate monotonic guarantees; if necessary, maintain two configurations—strict monotone without engineered crosses of constrained variables and a parity configuration without constraints—to separate the effects of constraints from interactions.

To operationalize parity reliably, the preprocessing layer must generate the agreed interaction set once and serialize it alongside each model. The feature registry should be implemented in the shared preparation function and mirrored in the inference path so that all models consume the same interaction definitions, with an explicit toggle for the monotone versus unconstrained tracks. Feature lists stored with each trained model ensure that inference uses an identical column order and transformation logic. This alignment enables consistent training, transparent inference, and fair, mechanism-based comparison across the ElasticNet, gradient boosting, and GAM models.
Deployment pipeline
A deployment pipeline must preserve the exact preprocessing and feature semantics used at training to avoid training–serving skew. The design objective is to serialize the fitted preprocessing components together with the selected model and its output back-transformation so that inference is a single, deterministic operation from raw inputs to price-scale predictions. This requires freezing learned clipping thresholds, imputation statistics, standardization parameters, spline bases, and monotonic constraints, and ensuring that the input schema is harmonized before any model-specific feature assembly.

The preprocessing stage consists of feature-wise pipelines assembled via a ColumnTransformer: months-since-start computation with interquartile-range clipping and standardization for transaction date; negative-to-NaN conversion, median imputation, non-negative IQR clipping, and robust scaling for house age; non-negative enforcement, log1p transformation with IQR clipping, and robust scaling for distance to MRT; median imputation, non-negative upper IQR clipping with rounding, and standardization for convenience stores; median imputation and axis standardization for latitude and longitude; and optional ordinal encoding for mixed-type columns with an unknown value sentinel. When fitted on the training data, these components store parameters such as min_year_, lower_/upper_ bounds, medians, and scaler moments. Serializing these fitted objects guarantees consistent transformation at inference, including deterministic handling of outliers and mixed data types.

Integration with modeling is achieved by encapsulating preprocessing and the chosen predictor in a single composite artifact. For linear models trained with an internal scaler (e.g., ElasticNet wrapped in a StandardScaler), the scaler is already part of the model object; for tree-based and spline-based models, preprocessing should be placed as a front-end step that outputs the canonical feature set the model expects. Schema normalization is performed prior to transformation by renaming the original X1–X6 fields to canonical names and, where applicable, deriving model-specific features (e.g., squared terms and simple lat–lon interactions). The feature order used by each model is persisted and applied consistently during inference. Because all models were trained in log-space, the artifact should also carry the smearing factor computed from training residuals to enable unbiased price-scale back-transformation at serving.

Artifacts are serialized using a binary protocol with compression and optional base64 encoding for portability. In the current implementation, the best model object is serialized with pickle plus gzip, and a size warning is emitted when the payload exceeds a threshold; function source for inference is included when available to aid reproducibility. To serialize preprocessing jointly with the model, the recommended approach is to construct a scikit-learn Pipeline with two steps—preprocess and model—where preprocess is the fitted ColumnTransformer and model is the trained estimator (e.g., GAM spline approximator, monotonic gradient boosting, or ElasticNet pipeline). Custom transformers must remain importable in the deployment environment (or be bound to a stable module path) to ensure picklability across runtimes. Version metadata covering library versions, random seeds, and schema signatures should be recorded to support reliable deserialization and rollback.

At inference, the pipeline enforces input validation and schema harmonization, applies the frozen preprocessing transforms, generates log-space predictions, and emits both naive and smearing-corrected price-scale outputs. Mixed-type fields encountered in production are mapped to ordinal codes with a reserved unknown value to avoid runtime failures. Monotonic constraints embedded in the gradient boosting model do not require additional serving-time preprocessing but depend on the integrity of the input feature ordering and scaling assumptions. The inference function retains a consistent interface by computing any derived features internally when required and by using the persisted feature order, thereby eliminating dependence on external feature engineering code paths.

Operational robustness hinges on controlling sources of drift and nondeterminism. Learned preprocessing thresholds (e.g., IQR-based clip limits and months-since-start bounds) are treated as model parameters and must not be recomputed on serving data. Input columns are validated against the expected set; extra fields are ignored, and missing required fields cause explicit errors unless imputation rules are present in the preprocessing stage. Secure deserialization practices are enforced to mitigate risks associated with generic pickle loading. Finally, monitoring should track upstream schema changes and distribution shifts in key inputs to detect when the serialized preprocessing or smearing factor needs retraining to maintain calibration and stability.
Deployment and Inference
This section formalizes the deliverables and runtime protocol for serving predictions from the selected model. The deployment objective is to expose a stable, versioned artifact for the champion model together with an inference contract that preserves training-time transformations and produces both log-space and price-space outputs. Selection is based on the modeling results, where the GAM spline approximation achieved the strongest generalization performance; the deployment strategy, however, remains model-agnostic and supports champion–challenger evaluation when required.

The model artifact consists of a serialized best-model object encoded as pickle compressed via gzip and then base64-encoded for transport. The bundle records the serialization format as pickle+gzip and attaches a size notice when the compressed payload exceeds a defined threshold. In addition to the binary payload, the result package includes a structured metadata block for all trained models comprising model names, types, key metrics, hyperparameters, feature order, smearing factors for back-transformation, and residual diagnostics. For interpretability models, smooth functions or feature importances are also included. The reference implementation of the inference routine is provided as source text to document the on-line computation path. As with any pickle-based artifact, reproducible loading requires compatible library versions and availability of custom class definitions used during training; the target runtime should pin core dependencies and include the same class definitions to ensure safe and deterministic deserialization.

The inference interface is unified across models and expects a tabular input with canonical field names: price (optional, used only for evaluation), transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, and longitude. Inputs are validated for presence and numeric types; when the optional price is absent it is set to missing without affecting prediction. Where upstream systems retain original dataset column names (for example, X1 transaction date through X6 longitude and Y house price of unit area), a renaming step equivalent to the training routine’s ensure_columns_and_prepare must be applied prior to serving. Because the models were trained on transformed features, the on-line pipeline must ensure the same feature scale and representation used in training; specifically, transaction_date corresponds to the numeric time index utilized during modeling, house_age is the nonnegative, possibly robust-scaled representation, distance_to_mrt is the log1p-transformed and scaled distance proxy, convenience_stores is the clipped, rounded, and standardized count, and geographic coordinates are standardized axes. If the deployment bundle does not encapsulate the preprocessing transformer, these steps must be executed upstream using the preprocessing procedures defined earlier to maintain feature parity and avoid drift due to scale mismatch.

At prediction time, the interface supports both single-record and batch inference. For linear models employing engineered terms, the inference routine deterministically constructs age_sq, distance_sq, and lat_long from the provided base features. For tree-based and spline models, the exact feature set listed in each model’s feature_order_used is assembled. The champion GAM model consumes the six canonical base features and returns log-space predictions via its predict method; other candidates use their respective predict APIs on the ordered numeric design matrix. To facilitate downstream consumption, the service returns three aligned outputs per model: the predicted value in log space; the naive back-transformation expm1 of that value; and the smearing-corrected price prediction computed as exp(log-prediction) multiplied by the model’s stored smearing factor, minus one. The smearing factor originates from the training residuals and is persisted in the model metadata; the smearing-corrected estimate should be preferred for price-level aggregation and error reporting because it reduces bias introduced by the nonlinear back-transformation.

Operationally, the service should enforce input schema checks, numeric range validations consistent with training bounds, and rejection or explicit clipping policies for out-of-domain values. Batch predictions must preserve input order for traceability and enable record-level reconciliation. Unpickling of the artifact should be performed in a controlled environment with pinned versions of core libraries to ensure binary compatibility; where a custom class underlies the model, the deployment package needs to ship the corresponding class definition to enable safe reconstruction. For extensibility and A/B testing, the documented inference routine supports multiple models concurrently, returning a structured response keyed by model name; production endpoints may expose only the champion model’s smearing-corrected price prediction as the primary output while retaining log-space values for diagnostic logging and drift analytics.
Model artifact
This deliverable provides a serialized model artifact suitable for transport and deployment in constrained environments. The artifact contains the best-performing model selected during evaluation and is encoded as a pickle byte stream compressed with gzip and then base64-encoded for safe inclusion in text-based containers. The artifact fields include best_model_b64 (the base64 string) and best_model_format set to pickle+gzip, enabling unambiguous decoding and loading across systems that support Python pickle, gzip decompression, and base64 decoding.

The artifact represents the single best model determined by the held-out test selection criterion (minimum test Log RMSE) at training time. In this run, the selection logic identifies the spline-based generalized additive model (GAM_SplineApprox) as the best model, so the artifact is intended to encapsulate that fitted estimator. To make the object picklable within the execution environment, the custom class was explicitly marked for pickling. Nonetheless, serialization of complex estimators can be environment-dependent; when a full model object cannot be serialized, the process falls back to a lightweight stub that only stores the model_name. In such a fallback case, the unpickled object is not usable for inference; consumers should detect this by checking for a predict attribute and, if absent, revert to loading the model from the full results bundle or retraining in the target environment.

Decoding and loading proceed in three steps: base64-decode the best_model_b64 string to bytes, decompress with gzip to retrieve the pickle payload, and unpickle to reconstruct the fitted model instance. Because unpickling executes constructors, it must be performed only in trusted environments with the corresponding class definitions importable at load time. Compatibility between the training and deployment Python versions and library stacks is recommended to avoid deserialization errors; if class resolution fails, ensure the same class code is available to the loader or consider exporting a more self-contained format in future iterations.

A size guard is applied to the compressed artifact. When the compressed payload exceeds a predefined threshold (approximately 8 MB), an artifact_warning field is emitted with the byte length to flag potential transport overhead or storage constraints. Downstream systems should check for this field and, if present, apply appropriate handling policies (for example, alternative storage or chunked transport).

The artifact contains only the fitted model object. It does not embed the full preprocessing pipeline or ancillary metadata. For correct inference, consumers must pair the artifact with the recorded model metadata emitted alongside training, in particular:
- feature_order_used to ensure input features are assembled consistently with training;
- smearing_factor to back-transform log-space predictions to price scale without bias;
- any feature engineering conventions (for example, age_sq, distance_sq, and lat_long if using linear models) when applicable to the chosen estimator.
The included inference interface in this project expects these elements to be available and reconstructs engineered features before invoking predict on the loaded model.

From an operational perspective, gzip compression reduces payload size while base64 encoding guarantees integrity through text-safe transport channels (for example, JSON configurations or environment variables). Although this approach is broadly compatible, it remains sensitive to Python pickling semantics. For portability and robustness, it is advisable to retain the training-time metadata bundle, validate decode–decompress–load steps in the target runtime, and perform a smoke test prediction to verify functional integrity before serving live traffic.
Inference interface
This interface provides a stable schema and deterministic transformations for generating out-of-sample predictions from the trained models. All models operate in log space for the target and, at inference time, return both log-scale predictions and price-scale predictions via two inverse mappings. To ensure compatibility with the training workflow, requests must supply canonical feature names and numeric values in the same units and encodings used for model development.

The input schema requires the following fields: transaction_date, house_age, distance_to_mrt, convenience_stores, latitude, longitude. The column price is optional at inference and, when present, is not used in prediction but can be retained for downstream evaluation. All required features must be present, numeric, and free of missing values; the interface does not perform imputation at scoring time. Column names use the canonical identifiers noted above; any upstream source fields (for example, X1 transaction date or X3 distance to the nearest MRT station) must be mapped to these canonical names before invoking inference. The transaction_date field must use the same numeric encoding as in training, and spatial and distance units must be consistent with the training data to avoid scale mismatch.

Feature construction for models that rely on engineered predictors is handled internally. Specifically, the interface derives age_sq = house_age^2, distance_sq = distance_to_mrt^2, and lat_long = latitude × longitude when required by a model. Callers therefore supply only the base features in the schema; there is no need to provide engineered features explicitly. No additional standardization, clipping, or type coercion is applied at inference, so inputs must already be clean and numerically valid.

Predictions are produced in log space and then mapped back to the price scale in two ways. The naive inverse uses the algebraic transform exp(pred_log) − 1, which is straightforward but biased on the original scale under log-normal error structures. The smearing correction uses a model-specific multiplicative factor computed from the training residuals (the mean of exp(residual)), producing price predictions as exp(pred_log) × smear_factor − 1. This correction adjusts for retransformation bias and was used to report price-level RMSE and MAE during model evaluation. The trained models carry their own smearing_factor values, estimated from their respective training residuals; for reference, the factors obtained in training were approximately 1.0204 (ElasticNet), 1.0135 (monotonic gradient boosting), and 1.0148 (GAM). At inference, the interface emits three parallel outputs per model: the log prediction, the naive price prediction, and the smearing-corrected price prediction.

Operationally, the interface accepts single-row or batch inputs and returns a per-model result keyed by model name, ensuring consistent consumption by downstream systems. Requests that omit any required feature (other than the optional price) are rejected to prevent silent degradations. Because smoothers and tree ensembles were fit on a specific range of dates, locations, and distances, inputs far outside the training domain constitute extrapolation and may reduce reliability; maintaining consistent encodings and units and validating ranges prior to scoring mitigates this risk. For applications that consume price-scale outputs, the smearing-corrected prediction should be used to align with training-time evaluation and to control retransformation bias.
Monitoring
This chapter defines the operational monitoring plan for distribution drift in the core input features that drive the model: X3 distance to the nearest MRT station, X4 number of convenience stores, X5 latitude, X6 longitude, and X1 transaction date. The objective is to detect changes in data generating processes early, distinguish benign evolution from harmful shift, and trigger remediation before forecast quality degrades. The plan leverages baseline shapes and relationships identified during exploratory analysis and modeling, and prioritizes interpretable, model-relevant indicators.

Data quality and schema guards form the first layer of protection. Each incoming batch is validated for required fields, data types, valid ranges, and unit conventions consistent with the preprocessing pipeline. For X3 and X4, verify numeric types prior to transformation, with X4 preserving its integer nature at the raw level; for X5 and X6, enforce geographic bounds corresponding to the Taipei study area and reject impossible coordinates; for X1, ensure monotone progression, valid calendar mapping, and absence of duplicates or timestamp gaps caused by ingestion errors. Record and monitor the fraction of imputed values and clipping events introduced by preprocessing (e.g., IQR-based clipping for X4, outlier clipping for X3), as rising rates are often early indicators of upstream data issues or genuine edge-case influx.

Univariate drift monitoring focuses on whether each feature’s marginal distribution remains compatible with training-time profiles. For X3, the baseline is a centered, unimodal distribution with thinner tails and mild right skew; monitor changes using distributional distances such as Population Stability Index (PSI), Kolmogorov–Smirnov (KS) statistics, or Wasserstein distance, and track shifts in central tendency and tail mass. In practice, PSI values below 0.1 indicate negligible drift, 0.1–0.2 moderate drift warranting review, and above 0.2 material drift requiring action. For X4, baseline diagnostics indicated bimodality with a longer upper tail; besides PSI/KS, monitor the share of mass in the low-amenity and mid-amenity modes, the persistence of integer levels, and the proportion of values affected by the IQR clip and rounding rules. For X5 and X6, distributions are centered with heavier tails and distinct clusters along east–west and north–south axes; monitor the marginal latitudinal and longitudinal distributions with KS tests and the proportion of observations at extreme coordinates where outlier influence and extrapolation risk are high. For X1, because time advances by design, monitor coverage and density rather than stasis: check for abrupt deviations in the arrival rate across bins, verify that standardized values do not drift far beyond the training support without corresponding model updates, and flag gaps or surges that suggest process changes or seasonality not seen in the training window.

Spatial and multivariate drift monitoring targets relationships that underpin price formation. Joint distributions of X3 and X4 originally exhibited a coherent accessibility–amenity gradient; monitor their dependence via rolling Spearman correlations and binned contingency checks to detect sign changes or intensity shifts that would alter the joint premium surface. For the spatial footprint, X5–X6 displayed clustered occupancy with a central hotspot; apply two-sample tests in two dimensions (e.g., kernel Maximum Mean Discrepancy) between incoming and reference coordinate clouds, and track cluster occupancy rates to detect geographic coverage drift (for example, new peripheral districts entering the stream). Because X5, X6, X3, and X4 are interdependent, include partial checks: conditional distributions P(X3|X5,X6) and P(X4|X5,X6) can reveal whether accessibility or amenity intensity is changing within neighborhoods rather than due to a shift in neighborhood mix.

Model-facing monitors bridge data drift to prediction stability. On the prediction side, track the distribution of log-scale predictions and price-scale back-transforms: means, variances, and high-quantile tails across rolling windows, as well as the share of predictions outside training-time interquartile bands. If labels become available with delay, add post-label monitors: rolling error metrics (log RMSE and R² in log space; RMSE and MAE on price via smearing correction), calibration plots by time and location, and residual variance stratified by X3 and X4 bands to identify heteroskedasticity changes. Alert when metrics cross control limits derived from training and validation ranges, recognizing that modest temporal evolution in X1 can shift the level without implying malfunction.

Given the selected GAM with spline smooths and a latitude–longitude tensor, specialized monitors protect against extrapolation and effect drift. Track the proportion of inputs falling outside the training bounds of each smoother (stored by the spline transformer); even small increases in out-of-support rates elevate extrapolation risk. Periodically estimate approximate partial dependence curves for X3, X4, and X1 on a shadow model or via rolling window predictions, and measure their distance to the baseline smooth functions (for example, L2 distance or area between curves). Flag deviations that alter monotonic sections expected by domain knowledge (decreasing effect for X3, increasing with saturation for X4, flexible trend for X1). For the 2D latitude–longitude surface, compare the current spatial effect map to the baseline tensor via normalized root mean square difference and monitor for emerging hotspots or depressions outside previously well-explained zones.

Alerting logic and thresholds should balance sensitivity and operational load. Combine multiple indicators into tiered alerts: Level 1 (informational) when a single univariate PSI crosses 0.1 or imputation/clipping rate rises modestly; Level 2 (warning) when two or more key indicators cross moderate thresholds (for example, PSI > 0.2 for X3 or X4, MMD p-value below a preset alpha for coordinates, or a doubling of out-of-bounds spline inputs); Level 3 (actionable) when prediction distributions shift materially together with data drift, or when post-label errors surpass validation-era maxima for sustained windows. All alerts should bundle diagnostic slices (by time, space, and amenity/accessibility bands) to speed triage.

Remediation pathways distinguish data issues from genuine market shifts. For suspected pipeline or schema changes, halt scoring for affected records, correct upstream transforms, and replay batches once data validity is restored. For authentic drift—such as a new transit corridor altering the X3 distribution, retail development shifting X4, or expansion into new lat–lon clusters—initiate a fast refresh of baselines and schedule model updating. A light-weight, time-aware re-fit of the GAM on recent data can be executed when out-of-support rates or effect-curve distances breach limits, with careful validation to avoid temporal leakage. Where drift localizes to specific geographies or bands, consider augmenting spatial features (e.g., geohash indicators or distances to newly relevant anchors) to restore explanatory power.

Operationalization and governance ensure traceability and continuous improvement. All monitors should run on rolling windows (for example, daily and weekly) with reference distributions anchored to the original training set and periodically refreshed under approved change control. Persist versioned artifacts for the preprocessing pipeline, model, baselines, and thresholds; log monitor outputs with timestamps, data volumes, and cohort keys. Employ spatially and temporally stratified dashboards to visualize drift trajectories in X3, X4, and the lat–lon plane alongside prediction stability and, when available, residual maps. Change management should document alert events, root-cause analyses, and outcomes, linking remediation actions to measurable reductions in drift indicators and recovery of performance metrics.

This monitoring design aligns with the dataset’s structure and the model’s mechanisms: accessibility, amenities, and location dominate valuation, and their distributions and interactions are the primary channels through which drift affects predictions. By combining schema validation, univariate and multivariate drift tests, spatial diagnostics, and model-specific effect checks, the system provides early, interpretable signals and a disciplined pathway to maintain reliability over time.
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